
Feature Clustering and Visualization

of High Dimensional Data using Clique Cover Theory

Master Thesis
Media Informatics

Abhijeet Das
Matriculation number 374125

2019-10-09

Supervisors:
Prof. Dr. Christoph Quix
Prof. Dr. Stefan Decker

Advisors:
Arnab Chakrabarti
Dr. Michael Cochez

Eidesstattliche Versicherung

___________________________ ___________________________

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige fals che Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

Acknowledgements

First of all, I would like to express my sincere admiration and gratitude to Prof. Dr.
Stefan Decker for giving me the opportunity to work on this thesis in his department. I
would like to thank Prof. Dr. Christoph Quix for his constant assistance, encouragement,
and feedback during the entire phase of the thesis. I am deeply grateful to Dr. Michael
Cochez for his valuable feedback and suggestions. Lastly, I am very much obliged to Arnab
Chakrabarti. Without his guidance, motivation, support, and optimism this thesis would
not have been possible.

I would also like to acknowledge the IT Center and IT Team of Informatik 5 for pro-
viding the computational and storage resources required for this study.

Finally, I would like to thank my dear parents and my friends for their trust, patience,
and constant support. Their motivation helped me to finish the thesis and my studies
successfully.

Abstract

The exponential growth of science and technology has led to a tremendous increase in
data volume. With the technological development raising its bar every day, the devices
are so well equipped that it is now possible to capture many aspects or features of data at
a relatively low cost. Many real-life applications involve the analysis of high-dimensional
data. As the number of dimensions increases, the challenge to process and visualize such
data also increases. A phenomenon known as “The Curse of Dimensionality” is frequently
observed in high-dimensional data. The approaches to reducing the dimensions either
attempt to transform the features or select a subset of features with the aim to minimize the
information loss. The feature transformation methods transform the feature space to create
a reduced set of principal components with the aim of having the same discriminatory power
as in the original space. The feature selection methods aim to maximize the relevance and
minimize the redundancy of the selected features. They are more interpretable because
they select a subset of the original feature without any transformation. Many feature
selection methods have shown good results when the class label information is present
in the data. Researchers have focused their attention on unsupervised feature selection
methods because the real-world data mostly doesn’t contain the class labels. Moreover,
this field is less explored compared to supervised learning. Recently, many graph-based
approaches have developed a considerable interest in the field of feature clustering and
selection because of the flexibility of applying many graph concepts to the data.

In this work, we present an approach to perform unsupervised feature clustering and
selection. The approach also provides a platform to visualize the features and the data
points in the reduced feature space using standard visualization methods like Parallel Coor-
dinates, Scatterplot Matrix, etc. The proposed approach develops a novel graph clustering
algorithm based on Clique Cover Theory to perform unsupervised feature clustering. The
number of clusters and the size of each cluster is determined dynamically without the need
to specify any parameters. The unsupervised feature selection is then performed by select-
ing the most central feature from each cluster. It is carried out by using a graph centrality
measure known as Eigenvector Centrality. An interactive User Interface is designed to
facilitate the user to select the dataset, explore the intermediate results (feature graphs
and correlation matrix), and to visualize the data points efficiently.

viii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 3

1.2.1 The Curse of Dimensionality . 3
1.2.2 Challenges of Existing Approaches 5
1.2.3 Comparison of Our Approach with the Current State-of-the-Art . . 6

1.3 Use Case Scenario . 7
1.4 Goal of the Thesis . 11

1.4.1 Define Data Model . 11
1.4.2 Determine Feature Clustering . 11
1.4.3 Select the Representative Feature 11
1.4.4 Visualize the Selected Features . 12
1.4.5 Evaluate the Proposed Approach 12

2 Related Work 13
2.1 Related Work on Feature Clustering . 13

2.1.1 Bottom-up Algorithms . 13
2.1.2 Top-down Algorithms . 14

2.2 Related Work on Dimensionality Reduction 16
2.2.1 Feature Transformation . 16
2.2.2 Feature Selection . 17

2.3 Related Work on Feature Correlations . 18
2.4 Related Work on Unsupervised Feature Selection Methods 19

2.4.1 Unsupervised Feature Selection using Feature Similarity 19
2.4.2 Laplacian Score for Feature Selection 20
2.4.3 Spectral Feature Selection for Supervised and Unsupervised Learning 21
2.4.4 Unsupervised Feature Selection for Multi-Cluster Data 22

2.5 Related Work on High-dimensional Data Visualization 23

3 Solution 25
3.1 Selection of Dataset . 25
3.2 Define Data Model . 26
3.3 The System Architecture . 27

ix

x CONTENTS

3.4 Ingestion Phase . 27
3.4.1 Data Cleaning . 27
3.4.2 Data Pre-processing . 29
3.4.3 Data Imputation . 30
3.4.4 Data Segregation . 30

3.5 Processing Phase . 30
3.5.1 Feature Correlation . 31
3.5.2 Identifying Threshold Coefficient 36
3.5.3 Clique Cover Algorithm . 37
3.5.4 Representative Feature Selection . 40

3.6 Visualization Phase . 42
3.6.1 Parallel Coordinate Plot . 42
3.6.2 Scatterplot Matrix . 43
3.6.3 Grouped and Stacked Bar Charts 44
3.6.4 3D Scatterplot . 46

4 Implementation 47
4.1 Ingestion Phase . 47

4.1.1 Data Cleaning . 48
4.1.2 Data Pre-processing . 50
4.1.3 Data Imputation . 51
4.1.4 Data Segregation . 51

4.2 Processing Phase . 52
4.2.1 Feature Correlations . 53
4.2.2 Identifying Threshold Coefficient 56
4.2.3 Applying Clique Cover Algorithm 58
4.2.4 Representative Feature Selection . 62

4.3 Visualization Phase . 64
4.3.1 Parallel Coordinate Plot . 64
4.3.2 Scatterplot Matrix . 65
4.3.3 Grouped and Stacked Bar Charts 65
4.3.4 3D Scatterplot . 66

4.4 User Interface . 67

5 Evaluation 71
5.1 Experimental Setup . 71
5.2 Selection of Datasets . 71
5.3 Existing Approaches . 73
5.4 Evaluation Metrics . 73

5.4.1 Quantitative Evaluation . 73
5.4.2 Qualitative Evaluation . 75

5.5 Computational Complexity . 76
5.6 Quantitative Evaluation Results . 78

CONTENTS xi

5.6.1 The Musk Dataset . 78
5.6.2 The Robot-Fail Dataset . 82
5.6.3 Friedman Test . 86
5.6.4 Summary of the Quantitative Evaluation Results 89

5.7 Qualitative Evaluation . 90
5.7.1 Heart Dataset . 90
5.7.2 Australian Credit Approval Dataset 92
5.7.3 Observations . 94

6 Conclusion 95
6.1 Summary . 95
6.2 Future Work . 95

A Appendix 105
A.1 Existing Feature Selection Methods . 105
A.2 Quantitative Evaluation Results . 108

A.2.1 Automobile Dataset . 108
A.2.2 Breast Cancer Dataset . 111
A.2.3 Auto Univ Dataset . 114
A.2.4 QSAR Biodegradation Dataset (No Missing Values) 117
A.2.5 QSAR Biodegradation Dataset (With Missing Values) 120
A.2.6 Sonar Dataset . 123
A.2.7 Emotions Dataset . 126
A.2.8 Spectrometer Dataset . 129

B Abbreviations 133

xii CONTENTS

List of Figures

1.1 The Curse of Dimensionality [1] . 3
1.2 The Automobile Dataset . 7
1.3 Parallel Coordinate Plot . 10

2.1 2D Grid . 14
2.2 Subspace Clustering Methods [1] . 15
2.3 Principal Components in PCA . 16
2.4 Visualization Flow Diagram [2] . 23

3.1 The System Architecture . 28
3.2 The Steps in Ingestion Phase . 29
3.3 The Types of Data . 31
3.4 The Process Workflow . 32
3.5 Contingency Table . 33
3.6 MIC Equitability Results [3] . 34
3.7 MIC Grid Resolution [3] . 35
3.8 MIC Characteristic Matrix [3] . 35
3.9 Graph with Clique and Maximal Clique . 37
3.10 Sample Feature Dependency Graph . 38
3.11 The Parallel Coordinate Plot . 43
3.12 The Scatterplot Matrix . 44
3.13 The Grouped Bar Chart . 45
3.14 The Stacked Bar Chart . 45
3.15 The 3D Scatterplot . 46

4.1 The Automobile Dataframe . 48
4.2 The finalCatCols Dataframe . 52
4.3 The finalNumCols Dataframe . 53
4.4 The resultMIC Matrix . 54
4.5 The resultCramer Matrix . 55
4.6 The Categorical Complete Feature Graph 56
4.7 The Categorical Feature Dependency Graph 58
4.8 The Categorical Cluster Graph . 61

xiii

xiv LIST OF FIGURES

4.9 The Representative Feature Graph . 64
4.10 The Application Homepage . 67
4.11 Categorical Correlation HeatMmap in UI layout 69
4.12 Cluster Feature Graph in UI layout . 69
4.13 Representative Feature Graph in UI layout 69
4.14 Parallel Coordinate Plot in UI layout . 69

5.1 Time Complexity Analysis . 77
5.2 Classification Accuracy (Musk Dataset) . 78
5.3 Clustering Accuracy (Musk Dataset) . 79
5.4 ROC Curve (Musk Dataset)(1) . 80
5.5 ROC Curve (Musk Dataset)(2) . 81
5.6 Classification Accuracy (Robot-Fail Dataset) 82
5.7 Clustering Accuracy (Robot-Fail Dataset) 83
5.8 ROC Curve using SVM (Robot-Fail Dataset)(1) 84
5.9 ROC Curve using SVM (Robot-Fail Dataset)(2) 85
5.10 Friedman Ranks . 88
5.11 Parallel Coordinate Plot with Full Feature Set (Heart Dataset 90
5.12 Parallel Coordinate Plot from Laplacian Selection (Heart Dataset) 91
5.13 Parallel Coordinate Plot from our Approach (Heart Dataset) 91
5.14 Parallel Coordinate Plot with Full Feature Set (Aus. Credit Dataset 92
5.15 Parallel Coordinate Plot from Laplacian Selection (Aus. Credit Dataset) . 93
5.16 Parallel Coordinate Plot from our Approach (Aus. Credit Dataset) 93

A.1 Classification Accuracy (Automobile Dataset) 108
A.2 Clustering Accuracy (Automobile Dataset) 108
A.3 ROC Curves (Automobile Dataset) 1 . 109
A.4 ROC Curves (Automobile Dataset) 2 . 110
A.5 Classification Accuracy (Breast Cancer Dataset) 111
A.6 Clustering Accuracy (Breast Cancer Dataset) 111
A.7 ROC Curves (Breast Cancer Dataset) 1 112
A.8 ROC Curves (Breast Cancer Dataset) 2 113
A.9 Classification Accuracy (Auto Univ Dataset) 114
A.10 Clustering Accuracy (Auto Univ Dataset) 114
A.11 ROC Curves (Auto Univ Dataset) 1 . 115
A.12 ROC Curves (Auto Univ Dataset) 2 . 116
A.13 Classification Accuracy (QSAR Bio Dataset) 117
A.14 Clustering Accuracy (QSAR Bio Dataset) 117
A.15 ROC Curves (QSAR Bio Dataset) 1 . 118
A.16 ROC Curves (QSAR Bio Dataset) 2 . 119
A.17 Classification Accuracy (QSAR Bio Dataset) 120
A.18 Clustering Accuracy (QSAR Bio Dataset) 120
A.19 ROC Curves (QSAR Bio Dataset) 1 . 121

LIST OF FIGURES xv

A.20 ROC Curves (QSAR Bio Dataset) 2 . 122
A.21 Classification Accuracy (Sonar Dataset) 123
A.22 Clustering Accuracy (Sonar Dataset) . 123
A.23 ROC Curves (Sonar Dataset) 1 . 124
A.24 ROC Curves (Sonar Dataset) 2 . 125
A.25 Classification Accuracy (Emotions Dataset) 126
A.26 Clustering Accuracy (Emotions Dataset) 126
A.27 ROC Curves (Emotions Dataset) 1 . 127
A.28 ROC Curves (Emotions Dataset) 2 . 128
A.29 Classification Accuracy (Spectrometer Dataset) 129
A.30 Clustering Accuracy (Spectrometer Dataset) 129
A.31 ROC Curves (Spectrometer Dataset) 1 . 130
A.32 ROC Curves (Spectrometer Dataset) 2 . 131

xvi LIST OF FIGURES

List of Tables

1.1 Categorical Cluster Table . 8
1.2 Numerical Cluster Table . 9
1.3 Categorical Representative Features . 9
1.4 Numerical Representative Features . 10

3.1 Selected Datasets . 26

4.1 The R Packages List used for Implementation 70

5.1 Selected Datasets for Evaluation . 72
5.2 Time Measured on Different Datasets . 77
5.3 Representation Entropy (Musk Dataset) 80
5.4 Representation Entropy (Robot-Fail Dataset) 84
5.5 Voting Classifier Scores . 86
5.6 Friedman Ranks . 87

A.1 Representation Entropy (Automobile Dataset) 110
A.2 Representation Entropy (Breast Cancer Dataset) 113
A.3 Representation Entropy (Auto Univ Dataset) 116
A.4 Representation Entropy (QSAR Bio Dataset) 119
A.5 Representation Entropy (QSAR Bio Dataset) 122
A.6 Representation Entropy (Sonar Dataset) 125
A.7 Representation Entropy (Emotions Dataset) 128
A.8 Representation Entropy (Spectrometer Dataset) 131

xvii

xviii LIST OF TABLES

List of Algorithms

1 Unsupervised Feature Clustering using Clique Cover Theory 40

2 Algorithm for Feature Correlations . 53
3 Algorithm for Identifying Threshold Coefficient 57
4 Clique Cover Algorithm . 59
5 Algorithm for Representative Feature Selection 62

6 Unspervised Feature Selection using Feature Similarity [4] 105
7 Laplacian Score for Feature Selection [5] . 106
8 Spectral Feature Selection [6] . 106
9 Unsupervised Feature Selection for Multi-Cluster Data [7] 107

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Introduction

With the ever-expanding amount of available computing resources, the ability to collect
and generate a wide variety of complex, high-dimensional datasets continues to grow. High-
dimensional datasets can be seen in numerous fields of study, such as economy, biology,
chemistry, political science, astronomy, physics, etc. Dimensionality refers to the number
of attributes or features in the data. In the domain of data visualization, a dataset with
10 or more features can be called as “high-dimensional” because of the limitations of the
visualization methods to efficiently illustrate all the features. Moreover, the data is mostly
unsupervised when dealing with real-world problems. One of the most prominent mining
techniques in unsupervised data is clustering. In the case of high-dimensional data, feature
clustering can help in a better understanding of the data and also in reducing the data
size for efficient storage and processing [8]. For example, it is used in several machine
learning tasks like image segmentation, information retrieval, text classification [9, 10, 11].
Feature selection is another mining technique that focuses on finding the most meaningful
dimensions, thereby removing irrelevant and redundant features from the data [4, 12]. The
result of the feature selection is a reduced feature set that can be effectively interpreted and
visualized. The visualization can be less cluttered and can provide intricate details of the
data which can be used for analysis. In our thesis, we have performed unsupervised feature
clustering by using a novel graph clustering approach based on the Clique Cover Theory.
Considering this clustering result into account, we have further performed unsupervised
feature selection using Eigenvector Centrality and finally visualize the selected features
using different standard visualization methods.

Clustering is the task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar to each other than to those in other groups 1.
In high-dimensional data, features can be interpreted as objects, and feature clustering
aims to group similar features together. Recently graph-based methods have shown good
results in many areas that require feature clustering such as text classification [13], face

1https://datavizproject.com/data-type/cluster-analysis/

1

https://datavizproject.com/data-type/cluster-analysis/

2 1 Introduction

recognition [14]. They have played an essential role due to their ability to encode similar-
ity relationships among data using the concepts of graph theory. In our approach, feature
clustering is performed using the concepts of the Clique Cover Theory. A brief explanation
of the concept is given below.

Clique Cover Theory- It is a graph clustering approach based on the underlying
notion of maximal cliques [15]. Clique, Q, is defined as a subset of vertices of an undirected
graph G such that every two distinct vertices are adjacent 2. A Clique, which is not a subset
of a larger clique, is known as maximal clique Qi

3. In our approach, we have extended
the concept of maximal cliques to the edge-weighted cliques. A maximal clique having the
maximum sum of edge-weights highlights the notion of a cluster. The recursive process of
determining such cliques leads to the generation of clusters of different sizes(more details
in Chapter 3, Section 3.5.3). In terms of graph theory, a cluster can be termed as a cover
on the respective nodes of the graph such that the subset of nodes is strongly connected
within the cover. The graph clustering algorithm is applied to the feature graph, which is
created with features as nodes and correlation coefficient as edge-weights. We have used the
Maximal Information Coefficient (MIC) [3] to determine correlations between numerical
features and the Chi-square Test of Association [16] followed by Cramer’s V to determine
the correlations between categorical features. A detailed explanation of these correlations
is given in Chapter 3, Section 3.5.1.

Feature selection, also known as variable selection or attribute selection is the process
of selecting a subset of relevant features from the original feature space [17]. The unsuper-
vised feature selection methods have raised considerable interest in many research areas.
This is mainly due to their ability to identify and select relevant features without requiring
the class label [18]. In our thesis, we have performed unsupervised feature selection as
a succeeding step after the feature clustering. The relevant feature, also termed as the
Representative Feature, is selected from each cluster using the concepts of Eigenvector
Centrality. It is used as a measure to determine the importance of a feature in a cluster 4.
A brief explanation of the concept of Eigenvector Centrality is given below.

Eigenvector Centrality- It is a global-based centrality measure that captures the
importance of a node by considering global information from all the nodes in the cluster.
In [19], the authors have stated that Eigenvector centrality gives better results when clusters
are formed by the determination of maximal cliques. It is based on the principle that “A
node is important if it is linked to by other important nodes” 5(more details in Chapter
3, Section 3.5.4). It is used to give relative scores to all the nodes in the cluster, and the
node with the maximum score is treated as the Representative Feature node.

In this thesis, we have developed an algorithm for unsupervised feature clustering and
selection. The algorithm constructs a feature graph using the features and the above-

2https://courses.cs.washington.edu/courses/cse527/01au/oct25/oct25.html
3http://mathworld.wolfram.com/MaximalClique.html
4https://www.sci.unich.it/~francesc/teaching/network/eigenvector.html
5http://djjr-courses.wikidot.com/soc180:eigenvector-centrality

https://courses.cs.washington.edu/courses/cse527/01au/oct25/oct25.html
http://mathworld.wolfram.com/MaximalClique.html
https://www.sci.unich.it/~francesc/teaching/network/eigenvector.html
http://djjr-courses.wikidot.com/soc180:eigenvector-centrality

1.2 Motivation 3

mentioned correlation measures. The graph clustering algorithm based on the Clique
Cover Theory is applied to perform unsupervised feature clustering. The Representative
Features are selected from each cluster using the Eigenvector Centrality. Finally, the data
points corresponding to the selected features or the reduced feature space is visualized using
different visualization methods such as parallel coordinates, scatterplot matrix, grouped
bar charts, etc. An interactive User Interface is designed to explore the intermediate steps,
visualize the feature graphs and their correlations and coherently visualize the data in the
reduced dimensions.

1.2 Motivation

Many real-life applications involve the analysis of high dimensional data. As the number of
dimensions increases, more and more scientific challenging problems appear. Moreover, the
methods of visualization become limited, clumsy, and difficult to interpret. In this section,
various factors that motivated to develop our approach are discussed. The challenges of
the existing approaches and a relative comparison of our approach are also described.

1.2.1 The Curse of Dimensionality

As the datasets possess high dimensions, there emerges a phenomenon known as “The
Curse of Dimensionality”. It was Richard Bellman, who coined this phrase in his book on
control theory [20]. In general terms, as dimensionality increases, the data points become
increasingly sparse.

Figure 1.1: The Curse of Dimensionality [1]

As seen in Figure 1.1, the data points in only one dimension are relatively tightly packed.
Adding a dimension stretches the points across that dimension, pushing them further apart.
Additional dimensions make the data points sparse, and the notion of distance is no longer
valid.

This calls for a technique known as “Dimensionality Reduction”. It refers to the process
of converting a set of data having high dimensions into lower dimensions, ensuring that

4 1 Introduction

it conveys similar information concisely [21]. In the language of statistics and machine
learning, it is the process of reducing the number of random variables by obtaining a set
of principal variables 6. The principal variables could be a new set of features or a subset
of original features. Dimensionality reduction techniques can be broadly classified into
Feature Transformation and Feature Selection Methods.

Feature transformation aims to find the principal variables of the dataset by creating
linear or non-linear combinations of features in order to uncover the latent structure [22, 23,
24]. The intuition is that a high-dimensional dataset may exhibit interesting patterns on a
low dimensional subspace because of the correlations among features. Principal Component
Analysis (PCA) [22] and Linear Discriminant Analysis (LDA) [23] are prominent linear
feature transformation methods, whereas Locally Linear Embedding (LLE) [24] is one
such non-linear feature transformation method. Following are some of the limitations of
these methods :

• The resultant features obtained from PCA are often less interpretable as it imple-
ments linear combinations of many features in high-dimensional data. It also suffers
from information loss if the data points are depicted in the form of a circle(2D) or
a hypersphere in high dimensions [25]. Moreover, it is unable to perform non-linear
combinations of features.

• LDA requires labeled data, which makes it more situational. It fails to preserve the
structure of the data if the distributions are non-Gaussian. It can give incorrect
results when the discriminative information is not present in the mean of classes but
in the variance [26].

• LLE is sensitive to noisy data. Moreover, it is known to have difficulty with a non-
convex manifold structure [27].

Feature selection aims to find the principal variables by selecting a small subset of
features in order to minimize redundancy and maximize relevance to the task [17]. It
involves searching through different feature subsets and evaluating each of these subsets
using certain criteria [28, 29]. With respect to the different selection strategies, feature
selection can be broadly classified into 3 models: Wrapper, Filter, and Hybrid. Following
are some of the limitations of each model:

• Filter model ranks each feature separately and thus does not take the feature depen-
dencies into account. They are known to perform well concerning supervised data
only where class labels are present.

• Wrapper model uses predictive models like clustering algorithms to score feature
subsets. They can model feature dependencies, but they possess the risk of overfitting
and high computational costs depending on the clustering algorithm.

6https://urlzs.com/Tf1XS

https://urlzs.com/Tf1XS

1.2 Motivation 5

• The hybrid model combines the benefits from both filter and wrapper models, but
they are also dependent on the computational performance of the clustering algo-
rithm.

1.2.2 Challenges of Existing Approaches

In this section, the limitations of some of the existing methods related to unsupervised
feature clustering and selection are described.

• In [30], the authors have introduced an algorithm for feature clustering based on
the Expectation-Maximization (EM) clustering algorithm. The major drawback is
that it has a slow convergence rate. It also tends to yield poor estimation to the
asymptotic Maximum Likelihood Estimator (MLE).

• In [4], the authors have introduced a correlation measure known as the maximum
information compression index to determine feature similarity. The correlation mea-
sure is known to capture only the linear relationship between features.

• In [31], the authors have used a graph clustering algorithm known as Louvain commu-
nity detection to cluster the features. Also, they have used Pearson product-moment
correlation to determine the edge-weights. The Louvain community detection algo-
rithm depends on modularity optimization, and have trouble detecting small com-
munities in large networks. On the other hand, the Pearson correlation is unable to
capture non-linear relationships.

• In [32], the authors have used Mutual Information as a measure to find edge-weights
between graph nodes. Although Mutual Information can capture non-linear relation-
ships, it is sensitive to bin size.

• In [33], the authors have performed Minimum Spanning Tree (MST) construction
by applying the Prims algorithm to identify the clusters. The complexity of MST
construction increases when dealing with high-dimensional data. Moreover, it uses
the uncertainty coefficient as a correlation measure, which is asymmetric in nature.
The authors in [6] have used Spectral graph clustering to determine the clusters. The
Spectral clustering requires a prior estimation of the number of clusters.

6 1 Introduction

1.2.3 Comparison of Our Approach with the Current State-of-the-
Art

In the previous section, various limitations of the existing approaches in processing high-
dimensional data have been discussed. In this section, a relative comparison of our approach
with regard to feature clustering, correlation, and selection are described.

• The Clique Cover approach determines the number of clusters and the size of each
cluster dynamically based on the intrinsic properties of the graph, such as maximal
cliques and edge-weights. Unlike Spectral Clustering, it doesn’t require to estimate
the number of clusters in advance.

• In our approach, the clusters are generated recursively until all the nodes are tra-
versed. Therefore, unlike the Louvain community algorithm, it can determine small
isolated clusters as well.

• The algorithm can be applied directly to the feature graph. Unlike MST, there is no
need to transform the graph into a tree structure.

For creating the feature graph, we have used a couple of correlation measures; the Chi-
square Test of Association and the Maximal Information Coefficient(MIC). The Chi-square
tests are used to determine correlations in the categorical feature groups, whereas MIC is
used in the numerical feature groups. Following are some of their properties:

• Unlike the Pearson correlation, MIC can capture a wide range of associations. It can
identify linear, non-linear, functional as well as non-functional relationships between
features.

• MIC gives similar scores to equally noisy relationships of different types without being
biased and provides the score in a normalized range between 0 and 1. The coefficients
resulting from MIC are more interpretable compared to the Mutual Information.

• Chi-square test of association is efficient while dealing with any type of categorical
data; nominal, ordinal, or dichotomous.

• Unlike the uncertainty coefficient, the Chi-square test is symmetric in nature and is
invariant with respect to the order of the categories in a categorical variable.

In our approach, we have not used the class label information to perform clustering and
selection. So, it can work on both supervised and unsupervised datasets. It doesn’t rank
the features independently but models the dependency by clustering them. The selected
features are the subset of the original features. Unlike PCA, it doesn’t transform the
features and thereby making them more interpretable. Besides providing clustering and
feature selection results, the approach provides an interface to visualize the Representative
Features. The interface allows the user to explore the intermediate results, visualize the
feature graph, and visually inspect the results using standard techniques.

1.3 Use Case Scenario 7

1.3 Use Case Scenario
To further clarify the motivation of developing such an approach, let’s consider a real-
world use case scenario. The scenario can help us to understand the problem definition
and demonstrate how the results from our approach can be used to overcome the problem.

Let us start by assuming that a user, say; John wants to purchase a new automobile.
He downloads an automobile dataset from a trusted source, like www.fueleconomy.gov.
The dataset has 42 columns representing various features related to automobiles such as
Mfr Name, Division, Carline, Annual Fuel Cost, City Fuel Consumption, etc. A screenshot
of the dataset is shown in Figure 1.2.

Figure 1.2: The Automobile Dataset

John is not aware of all the features and their characteristics that are required to make
a purchase decision. It can be time-consuming and baffling for John to understand all
the features. On the other hand, it would be much simpler if he could filter out a few
important features and make a decision based on that. In other words, a feature selection
method that could provide a subset of features from the original feature set can make the
dataset more comprehensible. It can also help John to identify relations between different
automobile features.

Given the high-dimensional data, our approach performs a series of operations to clean
and pre-process the data. The raw data available online may contain a lot of empty and
duplicate values that are needed to pre-process first. In the automobile dataset, some of the

8 1 Introduction

feature fields like “Fuel_cell_desc, Battery Type” doesn’t contain any values. There are
certain fields like “Guzzler, MaxBiodiesel” that are partially filled, whereas “Air Aspiration
Method” is a duplicate field. During the pre-processing, the missing values are replaced
with appropriate values, whereas the duplicate fields are removed. After cleaning and pre-
processing, the dataset is segregated into categorical and numerical feature groups. In this
case, there is a group of 11 categorical features and a group of 14 numerical features.

The feature groups are internally processed by applying various operations like feature
correlations, feature graph construction, and clustering. The technical details of these
methods are given in the Solution chapter Section 3.5. After processing, the approach
gives the cluster results, as shown in Table 1.1 and 1.2.

Clusters Node ID Node Desc

Cluster 1

4 Verify Mfr Cd
1 Mfr Name
3 Division
2 Carline
10 Max Ethanol...Gasoline

Cluster 2
5 Transmission
9 X..Gears
7 Trans Desc

Cluster 3 8 X..Cyl
11 X.1.Mfr.Smog.Rating

Cluster 4 6 Air Aspiration Method Desc

Table 1.1: Categorical Cluster Table

As seen, there are 4 categorical clusters and 5 numerical clusters. The number of
clusters and the size of each cluster is determined automatically without providing any
prior information. Moreover, all the nodes in the respective feature groups are part of
the cluster, meaning it contains all the information from the original data. The clusters
are used to identify the similarities between the features. For example, suppose John
is aware that the price of the automobile increases with the number of gears. He can
straightway apply the same analogy to Transmission and price relationship because Gears
and Transmission are part of the same cluster. After providing the clustering results,
the approach internally determines the centrality of each feature node in the cluster and
provides a set of Representative Features from all the clusters. They are the most central
and important feature that can describe the cluster in the most coherent way. The table
of selected Representative Features is shown in Table 1.3 and 1.4.

1.3 Use Case Scenario 9

Clusters Node ID Node Desc

Cluster 1

14 Comb Unadj FE- Conventional Fuel
11 MFR.Calculated Gas Guzzler MPG
9 Comb Co2 Rounded Adjusted
5 Comb FE Guide- Conventional Fuel

Cluster 2

3 City FE Guide- Conventional Fuel
7 City Co2 Rounded Adjusted
12 City Unadj FE- Conventional Fuel
6 Annual Fuel Cost

Cluster 3
4 Hwy FE Guide- Conventional Fuel
8 Hwy Co2 Rounded Adjusted
13 Hwy Unadj FE- Conventional Fuel

Cluster 4 2 Eng Displ
10 Carline Class

Cluster 5 1 Index Model Type

Table 1.2: Numerical Cluster Table

Clusters Node ID Node Desc
Cluster 1 3 Carline
Cluster 2 5 Transmission
Cluster 3 11 X.1.Mfr.Smog.Rating
Cluster 4 6 Air Aspiration Method Desc

Table 1.3: Categorical Representative Features

As seen, there are 4 categorical Representative Features and 5 numerical Representative
Features. It implies that we have reduced the total feature set from 42 to 9, considering
only significant features that can provide a better interpretation of the data. It would be
much simpler and effective for John to go through the selected 9 features in order to make
a decision. Besides giving the textual output, our approach also provides an interface to
visualize the data points corresponding to the selected features using standard visualization
techniques. The relationships between the features can also be examined using the feature
graphs. Visualization is effective in understanding the pattern of the data and explore
relationships. An example of visualization using a parallel coordinate is shown in Figure
1.3.

10 1 Introduction

Clusters Node ID Node Desc
Cluster 1 14 Comb Unadj FE- Conventional Fuel
Cluster 2 3 City FE Guide- Conventional Fuel
Cluster 3 4 Hwy FE Guide- Conventional Fuel
Cluster 4 10 Carline Class
Cluster 5 1 Index Model Type

Table 1.4: Numerical Representative Features

Figure 1.3: Parallel Coordinate Plot

1.4 Goal of the Thesis 11

1.4 Goal of the Thesis

In this section, the major goals of the thesis to develop the proposed approach are described.

1.4.1 Define Data Model

The data model consists of separate sets of categorical and numerical feature groups. After
the data is cleaned and pre-processed, it is segregated to create the data model. The reason
is that we want to capture the maximum trends of association in the respective feature
groups. The creation of the data model is the first step before processing the features.

1.4.2 Determine Feature Clustering

Once the data model is created, feature clustering is performed on each feature group.
This step involves several sub-tasks:

• Determining the correlation between feature pairs- This step embarks the generation
of the feature graph. A couple of correlation measures, namely the Maximal Infor-
mation Coefficient and Chi-square test of association are applied to the numerical
and categorical groups, respectively. The output of this step is the square weighted
adjacency matrix that contains the corresponding correlation coefficient between the
feature pairs. It can be interpreted as a complete feature graph, where every node is
connected to every other node.

• Identifying threshold coefficient - This step is used to determine the strong connec-
tions for every node in the complete feature graph. The concepts of the K-Nearest
Neighbour (KNN) is used to determine the threshold connections for each node. This
step prunes out weak relations from the complete feature graph and creates a feature
dependency graph consisting of only strong connections.

• Applying the Clique Cover clustering algorithm- Once the feature dependency graph
is generated, a graph clustering algorithm based on the Clique Cover Theory is ap-
plied. This step transforms the complete feature set into clusters of feature subset of
varying sizes.

1.4.3 Select the Representative Feature

This step selects a Representative Feature from each cluster obtained from the previous
step. A graph centrality measure known as Eigenvector Centrality is applied to determine
the most central feature from each cluster. In other words, one feature per cluster is
identified that can represent the cluster in the most coherent way.

12 1 Introduction

1.4.4 Visualize the Selected Features

The final part of our approach is visualization. It is characterized by 2 parts. In the first
part, the features are visualized using feature graphs like cluster feature graphs, repre-
sentative feature graphs. The correlation between features is explored using correlation
heatmaps. In the second part, the data points in the reduced feature space are visual-
ized using standard methods. The reduced dimensional space provides many visualization
techniques to demonstrate various characteristics of the data. Visualization can be very
effective in understanding the intricate details of the data and can, therefore, help the user
to make an efficient and prompt decision. Parallel Coordinate plot, Scatterplot Matrix,
3D Scatter plot, Grouped, and Stacked Bar Charts are some of the visualization methods
used by our approach. Various interactive modes like brushing, tooltips, and highlighting
are used to provide better visual cognizance.

1.4.5 Evaluate the Proposed Approach

For the evaluation, we have selected 9 datasets from different categories to compare our
results with the existing approaches. The datasets are chosen with varying numbers of
features and properties that enable us to test our approach in different circumstances.
The evaluation using the classification accuracy is performed using different classifiers.
The clustering accuracy metric is used for assessing the clustering quality. Representation
Entropy is used as a metric to evaluate the redundancy rate of the selected features. The
class separability and the cost-sensitive analysis is performed by plotting and comparing
ROC curves. The Friedman test is performed to compare different results on all the selected
datasets statistically. The computational complexity of different steps in the algorithm is
determined. The qualitative evaluation is carried out by plotting Parallel Coordinate Plot
and comparing the clutter observed in reduced feature space with respect to the original
feature space.

Chapter 2

Related Work

In this chapter, some of the preliminary works in the field of feature clustering, dimen-
sionality reduction, and unsupervised feature selection methods are discussed. An ac-
count of work related to feature correlation measures and visualization methods for high-
dimensional data are also described.

2.1 Related Work on Feature Clustering
Feature clustering [1] seeks to find clusters of features in different subspaces within a
dataset. These clustering algorithms localize the search for relevant dimensions or features
and thus attempts to find clusters that exist in multiple, possibly overlapping subspaces.
There are two major branches of subspace clustering based on their search strategy, namely
the Top-down approach and the Bottom-up approach. The bottom-up algorithms find
dense regions in low dimensional spaces and combine them to form clusters. The top-
down algorithms start with the full set of dimensions as the initial cluster and evaluate the
subspaces of each cluster, iteratively improving the results.

2.1.1 Bottom-up Algorithms

The bottom-up algorithm uses the grid-based clustering approaches [34] to determine clus-
ters. The grid-based approach (Figure 2.1) involves the following steps:

1. Divide the feature space into (hyper) rectangular cells- It works by partitioning the
range of values in each dimension into equally sized cells.

2. Discard low-density grid cells- A density-based definition of clusters is assumed, i.e.,
that high-density regions represent clusters, while low-density regions represent noise.

3. Combine adjacent high-density cells to form clusters.

The bottom-up method uses the downward closure property of density using the APRI-
ORI algorithm to reduce the search space. The downward closure property of density means

13

14 2 Related Work

Figure 2.1: 2-dimensional Grid for Cluster Detection [1]

that if there are dense units in K dimensions, then there are dense units in all (K-1) di-
mensional projections [1]. The bottom-up methods are categorized as the way in which
the grids are defined. The first group uses a static sized grid to divide each dimension into
bins. The second group uses a dynamic or adaptive grid size.

Clustering In QUEst (CLIQUE) [35] is one of the first algorithms that use static grid
size to determine the clusters within the subspace of the dataset. It combines density and
grid-based clustering and uses an APRIORI style technique to identify the clusters in the
subspaces. It creates the notion of the coverage. The coverage is defined as the fraction of
the dataset covered by the dense units in the subspace. The subspaces with the maximum
coverage are kept, and the rest are pruned. The clusters are formed by combining these
dense units. A CLIQUE can find clusters of any shape and can also result in overlapping
clusters. On the contrary, tuning the parameters for grid size and the density threshold
are difficult as both could significantly affect the quality of the clustering. Moreover, it
does not scale well with the number of dimensions.

Merging Adaptive Finite Intervals Algorithm (MAFIA) [36] is the extension of CLIQUE
that uses an adaptive grid based on the distribution of data. In this algorithm, the di-
mension is partitioned based on the data distribution, and the resulting cell boundaries
capture the cluster perimeter more accurately than fixed-sized grid cells. After the bins are
created, it uses a similar APRIORI style algorithm to generate the clusterable subspaces.
It requires giving the parameters like density threshold value and a threshold for merg-
ing adjacent windows. Although MAFIA works faster than CLIQUE and scales linearly
with the number of instances, its running time grows exponentially with the number of
dimensions in the clusters.

2.1.2 Top-down Algorithms

The top-down subspace algorithms start by finding an initial approximation of the clusters
in the full feature space. It assigns the weight for each dimension and then iteratively

2.1 Related Work on Feature Clustering 15

Subspace Clustering
Algorithms

Bottom Up MethodsTop Down Methods

Per Cluster
Weighting

PROCLUS
ORCLUS
FINDIT

Per Instance
Weighting

COSA

Static Grid

CLIQUE
ENCLUS

Adaptive Grid

MAFIA
CBF

CLTREE

Figure 2.2: Subspace Clustering Methods [1]

updates the weights by running a clustering algorithm. The approach requires multiple
iterations of expensive clustering algorithms in the full set of dimensions. The algorithms
also use the sampling technique to improve performance.

PROjected CLUStering (PROCLUS) [37] is the first top-down subspace clustering al-
gorithm. It samples the data, selects a set of K medoids, and iteratively improves the
clustering. The algorithm proceeds as a three-phase approach, initialization, iteration,
and cluster refinement. The initialization phase selects a set of potential medoids using a
greedy approach that is far apart from each other. The iteration phase selects a random
set of K medoids from this reduced dataset. It determines the cluster quality and replaces
the bad medoids with newly selected ones. Cluster quality is based on the average distance
between instances and the nearest medoid. The refinement phase reassigns points to the
new medoids based on the clusters formed. PROCLUS depends on the input of critical
parameters like the number of clusters and the size of the subspaces, which are difficult to
determine ahead of time.

Clustering On Subsets of Attributes (COSA) [38] is another top-down iterative algo-
rithm that assigns weights to each dimension for each instance. It starts by examining the
K-Nearest Neighbors (KNN) of each instance, and these neighborhoods are further used
to determine the respective dimension weights for each instance. The weights for pairs of
instances are calculated that are, in turn, used to update the distances used in the KNN
calculation. The process is repeated until the weights stabilize. Finally, the neighborhoods
for each instance become increasingly enriched with instances belonging to its own cluster.
It doesn’t need to specify the number of dimensions in clusters; however, the value of K
needs to be adjusted, which is used in the KNN calculations.

16 2 Related Work

2.2 Related Work on Dimensionality Reduction

As discussed in the Motivation Section 1.2, a phenomenon is known as “The Curse of
Dimensionality” is observed in high-dimensional data. It means that as the number of di-
mensions increases in a dataset, the points spread out far apart, and the notion of distance
is no longer very meaningful. It implies that the distance-based measures like K-means
clustering may not give an appropriate result. To cope with this, many dimensionality re-
duction measures are developed for a long time. These techniques can be broadly classified
into two categories: Feature Transformation and Feature Selection Methods.

2.2.1 Feature Transformation

Feature Transformation methods summarize the dataset by creating linear or non-linear
combinations of features with the aim to uncover latent structure [22, 23, 24]. They are
often used as a pre-processing step before applying a predictive model or a clustering
algorithm. These methods generate a new set of reduced features or principal variables.

Principal Component Analysis (PCA) [22] is one of the prominent linear feature trans-
formation methods. PCA has the notion of finding the eigenvectors of a covariance matrix
with the highest eigenvalues and uses those to project the data into lower dimensions. The
transformation is defined in such a way that the first principal component has the largest
possible variance. The succeeding component has the highest variance possible under the
constraint that it is orthogonal to the preceding components (Figure 2.3). It is often used
as a tool in exploratory data analysis and used for making predictive models. It is also
used to visualize genetic distance and correlations between populations.

Linear Discriminant Analysis (LDA) [23] is also a linear transformation method, but it
aims to maximize the separation between multiple classes. The direction of maximum vari-
ance, as used in the PCA, is not a good estimation for classification. LDA is a “supervised”
method that explicitly attempts to model the difference between the classes of data by find-
ing the best direction to separate classes. It projects the dataset onto a lower-dimensional
space with good class-separability in order to avoid overfitting.

Figure 2.3: Principal Components in PCA

2.2 Related Work on Dimensionality Reduction 17

Locally Linear Embedding (LLE) [24] is a non-linear dimensionality reduction tech-
nique. It works by embedding the objects in a low dimension while preserving their neigh-
borhoods. It first finds a set of the nearest neighbors of each point. Then it computes a
set of weights for each point in such a way that the point can be best described as a linear
combination of its neighbors. Finally, it finds the low-dimensional embedding of points,
such that each point is still described with the same linear combination of its neighbors.
LLE can project non-linear trends to lower dimensions but tends to give poor results when
handling non-convex manifold structure.

2.2.2 Feature Selection

Feature Selection attempts to discover the features of a dataset that are most relevant
to the data mining task at hand [39]. It is a commonly used technique for reducing the
dimensionality of a problem to more manageable levels. Rather than creating new features
by combination, feature selection aims to select a subset of features from the original
feature space making it more interpretable. It involves searching through various feature
subsets and evaluating each of these subsets using some criterion [17, 28, 29]. Depending on
selection strategies, it can be broadly classified into 3 models: wrapper, filter, and hybrid.

• Filter methods select the most relevant features from the data itself without using any
clustering algorithm. The features are evaluated based on the intrinsic properties of
the data. The main properties of filter methods are their speed and scalability. How-
ever, they are unable to model feature dependencies and yield better results mostly
with supervised data. Relief [40], Laplacian Score [5], Spectral feature selection [6]
are some of the filter methods.

• Wrapper methods use the results of a specific clustering algorithm to evaluate fea-
ture subsets. They are characterized by finding features subsets that contribute to
improving the quality of the results in the clustering algorithm. Although it can
model feature dependencies, the main disadvantage of wrapper methods is that they
have a high computational cost, and are dependent on a particular clustering algo-
rithm. Feature Subset Selection using Expectation Maximization (FSSEM) [30] is
an example of wrapper method.

• Hybrid methods exploit the qualities of both approaches, filters, and wrappers. It
attempts to achieve a compromise between efficiency (computational effort) and ef-
fectiveness. Boosting Based Hybrid Feature Selection (BBHFS) [41] is a hybrid based
approach.

18 2 Related Work

2.3 Related Work on Feature Correlations

The determination of the correlation between the features is one of the initial steps in
clustering. Correlation is a statistical measure that indicates the extent to which two
or more variables are related to each other 1. Feature correlation measures are used to
determine the extent of feature similarity between features. Recently many papers have
focused on determining similarity based on correlation measures [42]. This focus is because
the distance measures like Euclidean 2 can only measure the space distance between data
points, so they are unable to reveal the underlying dependency.

In [33], the authors have used a well-known measure of the correlation between two
random variables known as the Pearson correlation coefficient [43].

ρ =
cov(X, Y)

σxσy

It is defined as the covariance of the two variables divided by the product of their
standard deviations. It measures the linear correlation between two random variables. It
can take the value ranging from -1 to +1, implying negative and positive correlations,
respectively. The major limitation is that it cannot interpret non-linear correlations.

In [44], the authors have used the Spearman correlation coefficient [45] to measure the
relationship between two variables. Spearman’s rho can be interpreted as a rank-based
version of Pearson’s correlation coefficient, which can be used for variables that are not
normal-distributed. It can identify both the linear as well as monotonic relations.

ρ = 1− 6
∑
d2i

n(n2 − 1)

where d is the pairwise distances of the ranks of the variables xi and yi, and n is the
number of samples.

The linear or monotonic relationships approximate only a fraction of the true relation-
ship types. The authors in [32] have circumvented this problem by using Mutual Infor-
mataion [46], which is capable of identifying non-linear relationships. It is a measure of
the mutual dependence between the two variables. It quantifies the amount of information
obtained about one random variable by observing the other random variable. The concept
of Mutual Information is linked to the entropy of a random variable [47]. Entropy mea-
sures the amount of uncertainty of an unknown or random quantity 3. Based on that, the
Mutual Information between two variables is the reduction in uncertainty in one variable
given another variable. Formally, it can be defined as:

1https://whatis.techtarget.com/definition/correlation
2https://www.definitions.net/definition/euclidean+distance
3https://towardsdatascience.com/the-intuition-behind-shannons-entropy-e74820fe9800

https://whatis.techtarget.com/definition/correlation
https://www.definitions.net/definition/euclidean+distance
https://towardsdatascience.com/the-intuition-behind-shannons-entropy-e74820fe9800

2.4 Related Work on Unsupervised Feature Selection Methods 19

I(X, Y) =
∑
x,y

P (x, y) ln
P (x, y)

P (x)P (y)

where P(x), P(y) are the individual probabilities, and P(x,y) is the joint probability.
Although Mutual Information can capture non-linear trends, it is known to be compu-

tationally expensive and sensitive to bin size. In [48], the authors have used both Mutual
Information and Hoeffding inequality [49] as a constraint in determining feature correla-
tions. Hoeffding’s inequality provides an upper bound on the probability that the sum of
bounded independent random variables deviates from its expected value by more than a
certain amount 4.

The notion of correlation is termed as an association in the case of categorical variables.
As discussed, Spearman correlation can also be used when there are ordinal variables,
i.e., the variables that can be ranked. Like Spearman’s, Goodness and Kruskal’s Gamma
test [50] is also a non-parametric measure that is recommended when the data has many
tied ranks. Gamma tests for an association between points and also tells us the strength
of association. It is also particularly useful when the data has outliers, as they don’t
affect the results much. Both Spearman and Gamma test is used only in ordinal variables;
they cannot be used in the case of nominal variables. The uncertainty coefficient [51] is a
measure of the nominal association. It is based on information theory. In [33], the authors
have used the uncertainty coefficient to determine feature correlations. The uncertainty
coefficient, also called the entropy coefficient, is a measure of the entropy in a column
variable Y, which a row variable X explains. It is given by the formula.

U(X|Y) =
H(X)−H(X|Y)

H(X)

where, H(X) is the entropy of a single distribution and the relative entropy of X given
Y, H(X|Y). Although the uncertainty coefficient works for both ordinal and nominal data;
it is non-symmetric and gives a different output when the order of variables is changed.

2.4 Related Work on Unsupervised Feature Selection
Methods

Since our approach deals with the unsupervised data, some of the related works in the field
of unsupervised feature selection are discussed in this section.

2.4.1 Unsupervised Feature Selection using Feature Similarity

In [4], the authors have described an unsupervised feature selection algorithm suitable for
large datasets. A new feature similarity measure, known as the “Maximum Information

4https://medium.com/@ODSC/understanding-the-hoeffding-inequality-a4bb801a05a7

https://medium.com/@ODSC/understanding-the-hoeffding-inequality-a4bb801a05a7

20 2 Related Work

Compression Index”, is introduced. It is based on the principles of the Pearson product-
moment correlation and proposed an extension to capture more trends. The Pearson
correlation is given by :

ρ =
cov(X, Y)

σxσy

where cov() denotes the covariance and σ() denotes the standard deviation.
The Maximum Information Compression Index λ2 is given by the formula :

2λ2 =
√
V ar(x) + V ar(y)− 4V ar(x)V ar(y)(1− ρ(x, y)2)

The value of λ2 is zero when the features are linearly dependent and increases as
the amount of dependency decreases. The λ2 is the amount of the reconstruction error
committed if the data is projected to a reduced dimension in the best possible way. It
is a measure of the minimum amount of information loss or the maximum amount of
information compression possible.

The feature sets are partitioned based on the K-Nearest Neighbor principle using the
above similarity measure. The k-nearest features of each feature are computed. Among
them, the most compact subset is selected. The process is repeated for the remaining
features until all the features are either selected or discarded. In the first iteration, a
constant threshold ε is assigned, which is equal to the distance of the kth nearest neighbor of
the feature selected. In the subsequent iterations, the value of λ2 is checked corresponding
to ε, and the value of K is adjusted accordingly. Appendix A.1, Algorithm 6 gives the
algorithm for Unsupervised Feature Selection using Feature Similarity.

2.4.2 Laplacian Score for Feature Selection

In [5], the authors have used the filter-based approach of unsupervised feature selection
by ranking the importance of the features in a dataset. For each feature, the Laplacian
score is calculated to reflect its locality, preserving power. The score is based on the
observation that two data points are probably related to the same topic if they are close
to each other [52]. The nearest neighbor graph is constructed in order to model the local
geometric structure. The Laplacian Score (LS) is fundamentally based on two concepts;
Laplacian Eigenmaps [53] and Locality Preserving Projection [54]. The importance of a
feature can be considered as the degree to which it respects the graph structure. A “good”
feature should be the one on which two data points are close if and only if there is an edge
between these two points.

2.4 Related Work on Unsupervised Feature Selection Methods 21

A reasonable criterion for choosing a good feature is to minimize the following objective
function:

Lr =

∑
ij(fri − frj)2Sij

V ar(fr)

Where Var(fr) is the estimated variance of the r-th feature. For a feature to be consid-
ered as a good feature, the Sij, the frifrj, and thus the Laplacian Score tends to be small.
The step-wise description of the algorithm for selecting features based on the Laplacian
score is given in Appendix A.1, Algorithm 7.

2.4.3 Spectral Feature Selection for Supervised and Unsupervised
Learning

In [6], the authors have performed an unsupervised feature selection by exploiting the in-
trinsic properties of the graph based on Spectral Theory. A similarity measure known as
the RBF Kernel function is used:

Sij = e−
|xi − xj|2

(2δ)2

Where δ is a free parameter set according to the number of clusters involved. Given
G, its adjacency matrix W is defined as W(i, j) = wij. Also, the degree matrix D of the
graph G is defined by: D(i, j) = di, if i = j, and 0 otherwise. Here di can be interpreted
as an estimation of the density around xi, because the more data points that are close to
xi, the larger the di. Given the adjacency matrix W and the degree matrix D of G, the
Laplacian matrix L and the normalized Laplacian matrix L are defined as: L = D −W
and L = D−0.5LD0.5.

Spectral Feature Selection According to graph theory, the structural information
of a graph can be obtained from its spectrum. Spectral feature selection studies to select
features according to the structure of the graph induced from S. A feature that is consistent
with the graph structure assigns similar values to instances that are near each other on the
graph. It ranks the features of the graph obtained from S.

There are 2 main function used to calculate the rank of the feature vectors. Let f̃i =
(D

1
2fi) denote the weighted feature vector of Fi and f̂i = f̃i

| fi| denote the normalized
weighted feature vector. The score of Fi can be evaluated by the following function:

ϕ1(Fi) = f̂i
T
Lf̂i

22 2 Related Work

The value of ϕ1(Fi) can be small, if f̂i is very similar with eigenvector ξ0. In this case,
a small ϕ1(Fi) value does not indicate better separability. To handle this, another ranking
function is used :

ϕ2(Fi) =
f̂i

T
Lf̂i

1− f̂i
T
ξ0

According to spectral clustering theory, the leading K eigenvectors of L form the optimal
soft cluster indicators that separate G into K parts. Therefore, if K is known, we can also
use the following function for ranking: ϕ3(Fi) =

∑k−1
j=1(2− λj)α2

j

where λj are the Eigenvalues and
∑n−1

j=0 α
2
j = 1.

Based on the above-ranking functions, the spectral feature selection algorithm is given
in Appendix A.1, Algorithm 8.

2.4.4 Unsupervised Feature Selection for Multi-Cluster Data

Traditional methods score each feature independently and neglect the possible correlation
between different features and thus can not produce an optimal feature subset. To cope
with such issues, the authors in [7] paper proposed a new approach, called Multi-Cluster
Feature Selection (MCFS), for unsupervised feature selection. The features are selected
such that the multi-cluster structure of the data can be best preserved.

Since naturally occurring data usually have multiple clusters structure, a good feature
selection algorithm should consider the following two aspects:

1. The selected features should best preserve the cluster structure of the data.

2. The selected features should “cover” all the possible clusters in the data.

The flat embedding for the data points which “unfold” the data manifold can be found
by solving the following generalized eigenproblem Ly = λDy, where Y = [y1...yK], yk’s
are the eigenvectors of the above generalized eigen-problem with respect to the smallest
eigenvalue. L and D are the Laplacian and Degree matrix. Given yk, a column of Y, the
relevant subset of features can be determined by minimizing the fitting error as follows:

min
ak

∣∣yk −XTak
∣∣2 + β |ak|

where ak is a M-dimensional vector and | ak| =
∑M

j=1 | ak,j| denotes the L1-norm of ak.
The above regression problem has the following equivalent formulation:

min
ak

∣∣yk −XTak
∣∣2

|ak| ≤ γ

The Least Angel Regression (LAR) algorithm [55] can be used to solve the above
optimization problem. Instead of setting the parameter γ, LARs provides another choice

2.5 Related Work on High-dimensional Data Visualization 23

to control the sparseness of ak by specifying the cardinality (the number of non-zero entries)
of ak, which is particularly convenient for feature selection. For every feature j, we define
the MCFS score for the feature as :

MCFS(j) = maxk |ak,j|

The algorithm to perform unsupervised feature selection using multi-cluster data is
given in Appendix A.1, Algorithm 9.

2.5 Related Work on High-dimensional Data Visualiza-
tion

One of the major challenges of high-dimensional data is to visualize them. As the dimen-
sions grow, it becomes challenging to visualize them using traditional visualization tech-
niques. The major hindrances are the physical limitations of the display screen(2D/3D)
and the relatively small capacity to process complex data. In the past decade, several
approaches [2] are introduced to visually convey high-dimensional structural information
such as parallel coordinates [56], quality measures [57]. The process of visualization can be
divided into three steps: Data transformation, visual mapping, and view transformation.
The Visualization Flow diagram is shown in Figure 2.4.

Source Data Data Transformation Transformed Data Visual Mapping Visual Structure View
Transformation Views UserUser

User Interactions

Figure 2.4: Visualization Flow Diagram [2].The yellow boxes represent different steps of
the visualization process. The results of the individual steps are given in green.

Data transformation mainly consists of methods, namely feature clustering and dimen-
sionality reduction. Some of the works related to these fields are presented in sections 2.1
and 2.2. The visualization methods are incorporated in the data transformation methods.
For example, the interactive PCA (iPCA) [58] introduces a system that visualizes the re-
sults of PCA using multiple coordinated views. In [59], the authors have introduced a dual
visual analysis model where both the dimension embedding and point embedding can be
explored simultaneously.

Visual mapping converts the analysis result obtained from the data transformation or
the original dataset into visual structures based on various visual encodings. There are
various ways of visual mapping.

24 2 Related Work

1. Axis-Based Methods- These methods refer to visual mappings where element re-
lationships are expressed through axes representing the dimensions. Some mappings
in this category are:

• Scatterplot Matrix- A scatterplot matrix is a collection of bivariate scatterplots
in a matrix format that allows users to view multiple bivariate relationships
simultaneously. One of the major drawbacks of the Scatterplot Matrix is the
scalability. The number of bivariate scatterplots increases quadratically as the
dimensionality of the dataset increases. Scagnostics [60] is a set of measures
designed for identifying interesting plots and is also extended to handle time-
series data [61]. In [62], the authors have introduced an interactive feature
selection method by evaluating the maximum conditional entropy of all possible
axis-parallel scatterplots.

• Parallel Coordinate Plot- Parallel Coordinate Plot (PCP) [63] allows patterns
that highlight multivariate relations to be revealed by showing all the axes at
once. The major drawback is that as the number of points increases, the line
density in the PCP increases dramatically, which can lead to overplotting and
visual cluttering. The authors in [64] were able to reduce clutter for Parallel
Coordinate Plot without altering the information content simply by reordering
the dimensions and adding a brushing axis feature.

• Radial Layout- Radviz [65] uses a circular pattern. In Radviz, n-dimensional
anchors are placed along the perimeter of a circle. Each circle represents one of
the dimensions of an n-dimensional dataset.

2. Glyphs- Chernoff faces [66] are one of the first attempts to map a high-dimensional
data point into a single glyph. Recently, the authors have utilized glyphs to provide
statistical and sensitivity information to present trends in the data.

3. Pixel-Oriented Approaches- Several works have targeted dense pixel displays in
order to encode maximum information. The pixel concept can be applied to bar
charts to create pixel bar charts [67].

4. Animation- Recently, many techniques have used animated transitions to enhance
the perception of point and structure correspondences among multiple relevant plots.

View transformation is the final step that decides what is to be appeared on-screen. The
3 main categories of rendering process are Illustrative Rendering, Visual Representation,
and Color Blending.

User interaction is integrated with each of the processing steps. The amount of user
interaction is categorized into 3 parts: Computation-Centric, Interactive Exploration, and
Model Manipulation.

Chapter 3

Solution

As seen in the previous sections, there are many challenges in processing and visualizing
high-dimensional data. The feature selection methods mostly perform well in the presence
of the class labels. The wrapper model of unsupervised feature selection depends on the
clustering algorithms that may have high complexity. On the other hand, the filter models
fail to undertake the feature dependency into account. The graph-based feature selection
methods rely on the proper tuning of the parameters to give accurate results. Many correla-
tion measures are incapable of capturing different trends of association, thereby generating
misleading edge-weights in the graph. Moreover, the methods to visualize become limited
and yield clumsy results as the number of dimensions increases.

Fulfilling these limitations, it is tempting to develop an approach that aims to perform
feature selection in unsupervised high-dimensional data. In this chapter, we have described
various steps to create the data model, determine feature correlations and cluster features
using Clique Cover Theory. Considering the feature clusters into account, we have deter-
mined EigenVector Centrality scores to select Representative Features. The chapter also
describes various standard visualization methods to visualize data points in the reduced
feature space.

3.1 Selection of Dataset

In our approach, the unsupervised high-dimensional datasets are used. If the dataset has
class labels, we have removed them first and then used it in our approach in an unsupervised
way. We have chosen datasets from different categories in order to carry out the feature
clustering and selection. The selected datasets have an increasing number of features. Such
datasets enable us to perform the stress test of our approach. The number of categorical
and numerical features also varies in the selected datasets. Table 3.1 shows the name and
description of the selected datasets.

25

26 3 Solution

Data Sources List
Data Description Dimensions Data Source
Heart Dataset 13 kaggle
Australian Credit Dataset 14 openml
Hepatitis Dataset 20 kaggle
Automobile Dataset 25 UCI Machine Learning Lab
Breast Cancer Dataset 30 UCI Machine Learning Lab
Auto Univ Dataset 39 openml
QSAR Biodegradation
Dataset

41 openml

Right Heart Catheteriza-
tion Dataset

54 bigml

Sonar Dataset 60 kaggle
Emotions Dataset 78 openml
Robot Failure Dataset 91 openml
Yeast Dataset 116 UCI Machine Learning Lab
Spectrometer Dataset 125 openl
Musk Dataset 168 openml
Arrhythmia Dataset 280 kaggle
Airline Ticket Price Dataset 417 openml

Table 3.1: Selected Datasets

3.2 Define Data Model

The data model consists of separate sets of categorical and numerical feature groups. The
reason to segregate is that we wanted to apply the most suitable sets of correlation measures
that can capture maximum trends of association in the respective groups. As discussed in
Sections 1.2.2 and 2.3, there are many drawbacks of specific correlation measures. Also, a
single correlation measure cannot work well with both the categorical and numerical groups.
The selection of appropriate measures is required for the proper construction of the feature
graph, which we will see in the next sections. We have defined a set of constraints for all the
selected datasets in order to clean and segregate the data into categorical and numerical
feature groups. For example, a constraint is given to remove features like “ID” or “Name”,
which is unique for all the data points. Another constraint is to set a number of factors to
segregate the feature groups(details in Section 3.4.4 and 4.1.4).

For example, consider the automobile data described in the Use Case scenario(Chapter
1, Section 1.3) describing various features of a car like model name, brand, engine size,
displacement, horsepower, carline, fuel tank capacity, etc. In this case, our data model is
a collection of numerical feature groups that is “engine size, displacement, horsepower, fuel
capacity” and a separate collection of categorical feature groups like “model name, brand,
carline.”

3.3 The System Architecture 27

3.3 The System Architecture
The system architecture is laid into 3 phases (Figure 3.1) :

1. Ingestion phase - The first phase is to ingest and parse the dataset. The initial
operations on the data like cleaning, pre-processing, imputation, and segregation are
carried out in this phase. It creates the data model, i.e., a set of processed categorical
and numerical feature groups that is required in the subsequent phases.

2. Processing phase - This is the central and most important phase that takes the input
from the ingestion phase and output the reduced feature set. It contains all the
functions and algorithms required to process the data model and produces the result
for visualization. The two prominent operations carried out in this phase are Feature
Clustering and Representative Feature Selection.

3. Visualization phase - This phase is divided into 2 parts. The data points in the
reduced feature set are visualized using various standard visualization methods. The
features and their correlations are visualized using feature graphs like cluster feature
graphs, representative feature graphs, and correlation heatmap. The visualizations
provide interactive modes that enable the users to zoom, pan, brush or rotate the
graphs. It creates a clear impression of a multi-dimensional graph in a coherent way.

3.4 Ingestion Phase
This phase ingests the dataset, parse it, and creates the data model as needed to process in
the next phases. The dataset can be in CSV or JSON format. For describing the ingestion
steps, it is assumed to be in the form of a spreadsheet or table in which the rows represent
the data points, and the columns represent the features. The pictorial flow representation
of the steps involved in this phase is shown in Figure 3.2.

3.4.1 Data Cleaning

Data Cleaning is the critical first step in any data science project. In our approach, the
following steps have been used to clean the data.

1. Removing all NA or blank columns.

2. Removing all columns with more than 40% missing values 1.

3. Removing the columns that contain unique values for every row. For example, a
column like “Id” or “URL”, which is unique for every row, is insignificant because it
doesn’t possess any correlation with respect to other features and therefore can not
contribute to feature clustering and selection.

1https://www.dataquest.io/blog/machine-learning-preparing-data

https://www.dataquest.io/blog/machine-learning-preparing-data

28 3 Solution

Figure 3.1: The System Architecture

3.4 Ingestion Phase 29

Data Cleaning Data Pre-
processing

Data
Imputation

Data
Segregation

Removing
Empty
Columns

Removing
Duplicate
Columns

Type
Conversion

Standardization

Filling
Empty/NA
Values

Categorical
Feature
Groups

Numerical
Feature
Groups

Figure 3.2: The Steps in Ingestion Phase

4. Removing the columns that contain non-interpretable feature values. For example,
a column containing special symbols or non-ASCII characters has to be removed.

5. Removing duplicate columns.

3.4.2 Data Pre-processing

Data Pre-processing is a mining technique that involves transforming raw data into an
understandable format as needed to create the data model 2. In our approach, the following
steps have been used to pre-process the data.

1. Type conversion- This step ensures that the numbers are stored as numerical data
types, and the categorical variables are stored as string data types. For example, the
numerical feature, say weight(Kg), is given as “1595”. Due to the double quotes, this
value is interpreted as a string. This step converts such values into an interpretable
numeric format.

2. Rectifying syntax errors- It involves several steps like removing extra spaces at the
beginning of the string and fixing typos or structural errors 3

3. Standardization- It involves standardizing both numerical and categorical data. For
strings, it ensures all values are either in the lower or upper case. For numbers,
it ensures standardizing the numerical values like converting scientific notation to
interpretable decimal format.

2https://urlzs.com/d5BPo
3https://urlzs.com/r9qo1

https://urlzs.com/d5BPo
https://urlzs.com/r9qo1

30 3 Solution

3.4.3 Data Imputation

Data imputation is the process of replacing missing data with substituted values 4. There
are various methods of data imputation. The most basic method is imputation with mean/-
median. It works by calculating the mean/median of the existing values in a column and
then replacing the missing values by the generated mean/median independently. It has
the following disadvantages: it can only be used with numeric data, and it does not model
correlations between features. The imputation by mean/median also gives less realistic
and inaccurate results. Some other imputation methods are Multivariate Imputation by
Chained Equation (MICE) or Imputation using Deep Learning. Although these methods
are more accurate, they are computationally expensive.

In our solution, we have used a method known as “Fast imputation of missing val-
ues” [68]. It performs efficient data imputation by using a chained random forest method [69,
70]. It works on the principle of predictive mean matching that tries to raise the variance
in the resulting conditional distributions to a realistic level and performs multiple impu-
tations as an iterative chaining process. This method can be used to impute the missing
values to both categorical and numerical data types in a computationally efficient manner.

3.4.4 Data Segregation

This is the final step of the ingestion phase. After the data is cleaned, pre-processed, and
imputed, the segregation of data is carried out. It is done by considering the data type of
the values present in the columns. For example, the string data types like “Model Name” or
“Car Name” come in the categorical feature group, whereas the numerical data types like
“Mileage” or “Fuel Tank Capacity” come in the numerical feature group. The categorical
variables are also distinguished by having a certain number of factors or levels. Factors
are the variables that take on a limited number of different values; such variables are often
referred to as categorical variables 5. Based on the dataset values, a constraint on the
number of factors is applied to carry out segregation. Figure 3.3 shows different types of
data after segregation.

3.5 Processing Phase

This is the central and most important phase consisting of functions and algorithms that
perform the unsupervised feature clustering and selection. It involves the steps to create
the feature graph, apply the graph clustering algorithm, and perform feature selection.
The process flow diagram of the steps is shown in Figure 3.4.

4https://www.theprojectdefinition.com/data-imputation/
5https://www.guru99.com/r-factor-categorical-continuous.html

https://www.theprojectdefinition.com/data-imputation/
https://www.guru99.com/r-factor-categorical-continuous.html

3.5 Processing Phase 31

Data

Numerical Categorical
Mileage, Avg
Speed, Axle
Length, Body

Weight

Mfr Name,
Carline,

 Drive Desc,
Gears, Cylinder

Size

Continuous

Mileage, Avg
Speed

Discrete

Axle Length,
Body Weight

NominalOrdinal

Drive Desc(2-
wheel/All-wheel)

Mfr Name,
 Carline

Data has real values Data has integral
values

Data has a hierarchy Data has no hierarchy

Factors
Data has factors

Gears, Cylinder
Size

Figure 3.3: The Types of Data

3.5.1 Feature Correlation

To construct the feature graph, we need to determine the feature correlations first. The
feature graph is the graphical representation of the data where the nodes are the features,
and the edge-weights are the correlation or association coefficients between the features.
From the ingestion phase, we have the data model as the categorical and numerical feature
groups. The features in the respective group become the nodes of the feature graph, and
the correlation coefficient becomes the edge-weight between the nodes. In our approach, a
couple of correlation measures are used:

1. Chi-square test of association followed by Cramer’s V for categorical feature groups.

2. Maximal Information Coefficient (MIC) for numerical feature groups.

Chi-square Test and Cramer’s V Chi-square test [16] is used to determine relation
or association between variables at the categorical level, i.e., at nominal or ordinal levels.
It can be used at both univariate and bivariate levels. In its univariate form, it is known
as “Chi-square goodness of fit test” [71]. For example, if we wanted to explore whether the
frequency of weddings across months of the year are evenly distributed, the univariate form
can be used. The bivariate form analyses two variables in conjunction with one another.
It is known as the “Chi-square test of association” [71]. For example, it can be used to
examine whether gender is associated with the fear of crime. In our approach, we have used
the “Chi-square test of association” to find the correlation between categorical variables.

The Chi-squared test of association, also written as χ2, is a statistical hypothesis test
that finds the association between categorical variables. It determines whether a set of
observed frequencies deviate significantly from a set of expected frequencies 6. It works on

6https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/
chi-square/

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/chi-square/
https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/chi-square/

32 3 Solution

the contingency table. A contingency table (also known as a cross-tabulation or crosstab) is
a type of table in a matrix format that displays the (multivariate) frequency distribution of
the variables. It provides a basic picture of the interrelation between two variables and can
help find interactions between them. It is often used in business intelligence, engineering,
and scientific research. A sample contingency table is shown below in Figure 3.5.

The formula for calculating Chi-square test of association is given as:

χ2 =
1

d

n∑
k=1

(Ok − Ek)
2

Ek

where: Ok is the Observed frequency, Ek is the Expected frequency and d is the number
of rows in the contingency table.

The expected frequency can be calculated by multiplying row total and column total
divided by the grand total. For example, referring to the Figure 3.5, the expected frequency
with respect to the first block (where gender is Female, and Sport preference is Archery)
is ((100 * 45)/200).

Figure 3.4: The Process Workflow

3.5 Processing Phase 33

Figure 3.5: The Contingency Table 7

While Chi-square is advantageous in the sense that it is symmetric in nature and
invariant with respect to the order of the categories, it suffers from a few weaknesses. It
tells nothing about the strength of the association between the variables; it just signifies
that there is one. Another drawback is that it is sensitive to sample size.

In order to solve these problems, some post-hoc tests are needed like the Phi coefficient 8

and Cramer’s V 9. While both of them are immune to sample size, the Phi coefficient is
limited to the contingency table of size 2, whereas Cramer’s V can be used on the table
of any size. Moreover, Cramer’s V provides a normalized value between 0 and 1: where 0
implies little association, and 1 implies a strong association between the variables.

Cramer’s V is computed by taking the square root of the chi-squared statistic divided
by the sample size and the minimum dimension minus 1.

V =

√
χ2/n

min(k − 1, r − 1)

where χ2 is the Chi-square test, n is the grand total of observations, k being the number
of columns and r being the number of rows.

In our approach, the Cramer’s V coefficient is determined between every categorical
variable pair and stored in a matrix format. The entities in the matrix correspond to the
edge-weights in the categorical feature graph.

8http://www.pmean.com/definitions/phi.htm
9http://changingminds.org/explanations/research/analysis/cramers_v.htm

http://www.pmean.com/definitions/phi.htm
http://changingminds.org/explanations/research/analysis/cramers_v.htm

34 3 Solution

Maximal Information Coefficient (MIC)- MIC [3] is used to find correlations between
features in the numerical feature groups. Unlike Pearson and Spearman’s coefficient that
can capture only linear and monotonic relations, MIC can capture a wide range of associ-
ations like linear, non-linear, functional, and non-functional. MIC belongs to a larger class
of Maximal Information-based Non-parametric Exploration (MINE) 10. MINE statistics
can be used not only to detect interesting associations but also to identify the properties
such as non-linearity and monotonicity.

Two significant aspects of MIC are generality and equitability. Generality implies that
given sufficient sample size, the statistic can capture a wide range of interesting associ-
ations, not limited to specific function types (such as linear, exponential, or periodic).
Equitability means that the statistic should give similar scores to equally noisy relation-
ships of different types. For example, the statistic should not give a higher coefficient to a
noisy linear relationship compared to strong sinusoidal relationships. An equitable statis-
tic should give similar scores to functional relationships. Figure 3.6 shows the equitability
results of different relationships.

Figure 3.6: MIC Equitability Results [3]

MIC is based on the concepts of Mutual Information. The Mutual Information is a
measure of the mutual dependence between the two variables and is based on the concepts
of Information Entropy 11.It can capture non-linear trends, but it is computationally ex-
pensive to determine Mutual Information in high-dimensional data [72]. To overcome this,
MIC calculates the normalized Mutual Information obtained from a grid of points in the
data.

10http://www.exploredata.net/
11http://www.scholarpedia.org/article/Mutual_information

http://www.exploredata.net/
http://www.scholarpedia.org/article/Mutual_information

3.5 Processing Phase 35

Figure 3.7: MIC Grid Resolution [3]

Intuitively, MIC is based on the idea that if a relationship exists between two variables,
then a grid can be drawn on the scatterplot that partitions the data to encapsulate that
relationship. Consider Figure 3.7; the plot shows a non-linear relationship between 2
variables. In the case of the 2x2 grid, the bottom grid structure captures the maximum grid
resolution because it covers the entire non-linear relationship with the least possible area.
Similarly, in the 2x3 grid structure, the last one has the maximum grid resolution. The grid
resolution is determined by the mutual information present in that grid. Therefore, the
first step to calculate MIC is to explore all grids, computing for every pair of integers (x,y),
and to determine the maximum grid resolution or the largest possible mutual information
obtained in the x-by-y grid.

Figure 3.8: MIC Characteristic Matrix [3]

36 3 Solution

I∗(D, x, y) = maxI(D|G)

where I*(X|Y) represents Mutual Information taken maximum overall grids G with x
columns and y rows.

The next step is to normalize the Mutual Information values to ensure a fair compari-
son between grids of different dimensions. A characteristic matrix (Figure 3.8) is defined
containing the highest normalized mutual information achieved by any x-by-y grid.

M(D)x,y =
I∗(D, x, y)

logmin(x, y)

Finally, MIC is defined to be the maximum value present in the characteristic matrix.

MIC(D) = maxx,yM(D)x,y

In our approach, MIC is used as a measure to determine the correlation between the nu-
merical feature groups. A square matrix is generated to contain the correlation coefficients
between the feature pairs.

This ends the first step of the processing phase. The square weighted matrix can be
interpreted as the complete graph. A complete graph is an undirected graph in which
every pair of distinct vertices is connected by a unique edge 12. By the end of this step,
we obtain a couple of complete feature graphs with nodes and edges corresponding to the
features and correlations in the respective feature groups(details and feature graphs are
given in Chapter 4, Section 4.2.1).

3.5.2 Identifying Threshold Coefficient

A graph cluster possesses the property that the internal nodes are strongly connected with
each other. The complete feature graph obtained from the previous step may contain a few
weakly connected edges between the nodes. In this step, we have determined a threshold
correlation coefficient for each feature node and prune out the weak edges (edges below
the threshold). The threshold is determined using the concepts of K-Nearest Neighbors 13.
The value of K is determined based on the number of features in the complete feature
graph. The K strongest connections for each feature are retained, and the rest are pruned.

K-NN approach is commonly used in graph algorithms to determine the proximity of
the nodes [73]. It is often used in search applications where we are looking for similar
items. For example, searching for semantically similar documents, also referred to as
Concept Search. It is also extensively used in Recommender systems. The reason for using
the K-NN algorithm is that it doesn’t require any assumptions or training steps to build
the model. Moreover, it is easy to implement and robust to noisy data as well. K-NN
algorithm has been used in spectral clustering to determine the clusters of nodes present in

12http://mathworld.wolfram.com/CompleteGraph.html
13https://urlzs.com/J4F1y

http://mathworld.wolfram.com/CompleteGraph.html
https://urlzs.com/J4F1y

3.5 Processing Phase 37

the graph [74]. The authors have used Euclidean distance as a measure to determine edge-
weights. There are various methods to determine the value of K for the K-NN algorithm.
In our approach, the value of K is determined using the standard rule of thumb formula
given as the square root of the number of features 14. After determining the value of K,
the weak edges are pruned by replacing their values with zeros in the weighted adjacency
matrix. The resultant feature graph, which we called the feature dependency graph, is
represented in the form of an affinity matrix (details in Section 4.2.2). An affinity matrix
is a matrix representation of a graph containing all the nodes, but edges correspond only
to the strong associations. It is also symmetric in nature. The feature dependency graph
obtained in this step is used as a base to perform the graph clustering algorithm.

3.5.3 Clique Cover Algorithm

In this step, a graph clustering approach is known as “Clique Cover Theory” is applied to
the feature dependency graph to cluster the features. It is based on the concept of maximal
cliques. The cluster identification using a maximal clique is a part of the family of dominant
set clustering [15], which is used in the domain of computer vision and bioinformatics.

The dominant set theory has intriguing links to game theory, graph theory, and opti-
mization theory. From the game-theoretic perspective, clusters are regarded as equilibria of
non-cooperative clustering games. From the graph-theoretic context, it generalizes the no-
tion of the maximal clique to edge-weighted graphs. From an optimization point of view, it
can be characterized in terms of solutions to a simplex-constrained, quadratic optimization
problem.

In our approach, the graph-theoretic aspect of the dominant sets is used that is based
on the concepts of maximal cliques. A brief definition of clique Q and maximal clique Qi

are given in the Introduction Chapter (section 1.1). Given a graph G, a subgraph H of a
graph G is a maximal clique if H is isomorphic to a complete graph, and there is no vertex
v ∈ V(G) such that v is adjacent to each vertex of H [75]. In other words, a subgraph H
of a graph G is a maximal clique if H is a clique, and there is no vertex in G that sends an
edge to every vertex of H.

Figure 3.9: Graph with Clique and Maximal Clique

14https://saravananthirumuruganathan.wordpress.com/2010/05/17/
a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/

https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/

38 3 Solution

To understand the concept of clique and maximal cliques, let us consider the Figure
3.9. The following are the cliques in the graph: {4,6}, {1,2}, {1,5}, {2,3}, {2,5}, {3,4},
{4,5}, {4,6} and {1,2,5}. Every pair of vertices are connected with each other in all of
these cliques. The maximal cliques in this graph are {4,6}, {2,3}, {3,4}, {4,5}, {4,6} and
{1,2,5}, as all other cliques can be extended by a vertex to form {1,2,5}.

In our approach, the concept of maximal cliques is extended to edge-weighted graphs
because the feature dependency graph is an undirected and edge-weighted graph. The
maximal cliques with respect to the maximum sum of the edge-weights are identified from
the feature dependency graph. Such a subgraph satisfies 2 properties:

1. Internal homogeneity- Elements belonging to a group have high associations with
each other.

2. Maximality- A maximal clique cannot be further extended by introducing external
elements.

These properties emphasize the notion of a cluster. The cluster can be termed as Clique
Cover 15 in graph theory. A Clique Cover means partitioning an undirected graph into
cliques of various sizes. Using dynamic programming, the feature clusters are determined
recursively from the feature dependency graph.

Figure 3.10: Sample Feature Dependency Graph

15https://pdfs.semanticscholar.org/e94e/f10d4889ace7b0b17eb9fffad4cf7547eefb.pdf

https://pdfs.semanticscholar.org/e94e/f10d4889ace7b0b17eb9fffad4cf7547eefb.pdf

3.5 Processing Phase 39

Let’s consider the feature dependency graph shown in Figure 3.10 to understand the
clustering approach based on the Clique Cover Theory. Here we have 7 features F1 to F7
representing the nodes or features of the graph, and the edge-weight corresponds to the
correlation coefficient between the feature pairs.

The algorithm initially determines the cliques from the graph and further determines
the maximal cliques. It then proceeds to incorporate the edge-weights of the maximal
cliques. The maximal clique with respect to the maximum sum of edge-weight is identified
as the cluster. From the graph depicted in Figure 3.10, we can see that there exists many
cliques such as {3,6}, {1,7},{5,6},{3,5,6} etc. But there 5 maximal cliques namely, {3,4,6}
,{1,4}, {2,3,7}, {3,5,6} and {1,7}. The weight of a maximal clique is the sum of the weight
of the edges in that clique. So the corresponding weight of the 5 maximal cliques is 1.82,
0.65, 1.90, 1.42, and 0.60, respectively. In this case, {2,3,7} is the maximal clique with
respect to the maximum weight of 1.90. This clique satisfies “internal homogeneity” and
“maximality” properties because it has strong interconnections and is maximal in nature.
This can be termed as the first cluster or the Clique Cover. The algorithm removes the
clustered nodes and edges from the existing graph by dynamically truncating the affinity
matrix and updating the dimensions. This implies that the new feature dependency graph
contains the remaining 4 nodes with features F1, F4, F5, F6 respectively. The recursive
process of cluster identification is applied internally, and it outputs 2 more clusters {1,4}
and {5,6} from the recursively generated feature dependency graphs. Therefore, the Clique
Cover graph clustering algorithm generates 3 clusters {2,3,7}, {1,4} and {5,6} of sizes 3, 2
and 2 respectively.

As seen, the Clique Cover produces the non-overlapping/exclusive clusters, which is
evident from the result that none of the features are present in more than one cluster.
Moreover, the approach doesn’t require a prior estimation of the number of clusters. The
number of clusters and the size of each cluster is determined dynamically from the intrinsic
properties of the graph. We have recursively applied the Clique Cover Theory on the feature
dependency graph to generate feature clusters of different sizes.

The algorithm, “Unsupervised feature clustering using Clique Cover Theory”, requires
the weighted adjacency matrix obtained from the Feature Correlation step as the input
argument. It initializes two output lists; one for storing the cluster node IDs and the
other for storing the cluster node labels. Initially, the remaining dimensions are set to
the total dimensions of the feature graph. The algorithm proceeds by identifying the
threshold coefficient for each node and generate a feature dependency graph. Next, the
algorithm determines the cliques, maximal cliques, and the total number of maximal cliques
in the feature dependency graph. It then iterates through all of the maximal cliques and
identifies the maximal clique having the maximum weight by summing up the edge-weights
in the maximal clique. This maximal clique having maximum weight is the first cluster
or Clique Cover. It updates the output list with the corresponding node Ids and labels of
the first cluster. The algorithm then removes the clustered nodes and edges and updates
the feature graph with the remaining dimensions. It recursively calls the FeatureClustering
procedure to generate more clusters. This way, the algorithm recursively reduces the size
of the remaining dimensions and assigns the feature nodes as part of some clusters. The

40 3 Solution

terminating condition for the recursive process is reached when there is a single node. It
terminates by updating the output list with node Ids and labels of the last node. The
different steps of the algorithm are shown in Algorithm 1.

Algorithm 1: Unsupervised Feature Clustering using Clique Cover Theory
Procedure : FeatureClustering;
Input : Weighted Adjacency Matrix obtained from the Feature Correlation step.
Output : ClusterNodeIds and ClusterNodeLabels.
Initialize: ClusterNodeIds ← (); ClusterNodeLabels ← (); remainDim ← totalDim;
Step 1: Identify threshold coefficient.
Step 2: Generate a feature dependency graph.
Step 3: Determine Cliques Q, Maximal Cliques Qi and number of Maximal Cliques.
Step 4: Determine the weight of all the Maximal Cliques.
Step 5: Determine the Maximal Clique with maximum weight and set it as the first
cluster or the Clique Cover.
Step 6: Update the output with the cluster node Ids and labels.
Step 7: Remove the clustered nodes and edges from the feature graph.
Step 8: Update the feature graph with remaining dimensions.
Step 9: Recursive call to FeatureClustering procedure.
Step 10: If there is one feature node present, then update the output with the last
node.

3.5.4 Representative Feature Selection

This is the last step in the processing phase, where the Representative Features are selected
from each cluster. The selection is made using the concepts of graph centrality. Centrality
in social networks is an important measure of the influence of a node in the network [76].
One application in healthcare is discovering the central nodes that transmit disease among
the nodes that represent connected communities. Another application is identifying the
most influential person(s) in a social network.

There are different types of centrality measures:

• Local-Based Centrality Measures- It captures the importance of the node through
the partial information around it. Degree centrality is an example of Local-based
Centrality.

• Global-Based Centrality Measures- It considers global information giving better rank-
ing results. Betweenness centrality, Closeness centrality, Eigenvector Centrality are
examples of Global-based centrality.

In our approach, we have used the Eigenvector Centrality 16 as a measure to determine
the importance of a node in a cluster. The reason being it is a Global-based central-

16https://www.sci.unich.it/~francesc/teaching/network/eigenvector.html

https://www.sci.unich.it/~francesc/teaching/network/eigenvector.html

3.5 Processing Phase 41

ity measure and gives better results when used on the clusters obtained from maximal
cliques [19]. The other centrality measures like Closeness centrality or Edge betweenness
works well when the distance between the nodes is present. In our case, the correlation
between nodes can be well estimated by Eigenvector Centrality.

The brief description of Eigenvector Centrality is given in the Introduction Chapter
(section 1.1). It is an extension of degree centrality. It assigns relative scores to all nodes
in the network based on the concept that connections to high-scoring nodes contribute
more to the score of the node than connections to low-scoring nodes. It does not depend
on the number of neighbors but rather on how important its neighbors are. The importance
of its neighbors, in turn, depends on how important their neighbors are, and so on [77].
A node with a few important neighbors has larger Eigenvector Centrality than a node
with various neighbors of limited importance. The Eigenvector Centrality xi of a vertex
in an unweighted network is defined to be proportional to the sum of the centralities
of the vertex’s neighbors. In matrix notation, it is defined as becomes λx = Ax, such
that x is an eigenvector of the adjacency matrix A. A vector that can be multiplied by
the adjacency matrix for a graph and return itself multiplied by a scalar is known as
Eigenvector. Following this premise, for a weighted undirected graph G = (V, E, W) with
adjacency matrix A where weights denote correlations, we may write for every node x :

CE(x) =
1

λ

∑
(x,x′)∈E

W (x, x′)CE(x
′)

where CE(x) is the Eigenvector Centrality of the node x, and λ is some constant. The
centrality value of a node is defined as a weighted average of the centrality values of its
neighbors. In terms of the adjacency matrix, we can write it as :

CE(xi) =
1

λ

∑
j

AijCE(xj)

In matrix form, the above equation can be written as :

λCE = ACE

where CE = (CE(x1), ..., CE(xn))
T and represents the Eigenvector of adjacency matrix

A. The Eigenvector Centrality to a weighted network is the leading Eigenvector of the
adjacency matrix. It is useful for ranking search results in a citation network. Using the
citation frequencies as edge-weights, the Eigenvector Centrality would give papers high
scores either if they are cited by many others or if they are cited with high weight by a
few others.

In our approach, the process of determining the Eigenvector Centrality score is carried
out for all nodes in each cluster. The maximum score corresponds to the node, which is the
most central node in the graph. The central node is termed as the Representative Feature.

This concludes the processing phase of the solution approach. After getting the data
model from the ingestion phase, a series of operations are performed in this phase. The

42 3 Solution

construction of the feature dependency graph starts from determining the feature corre-
lations and identifying the threshold to prune out weak edges. The unsupervised feature
clustering is performed using the Clique Cover Theory. The Representative Feature set is
determined using the concepts of Eigenvector Centrality. The reduced feature set is now
carried to the visualization phase.

3.6 Visualization Phase
This is the last phase of the system architecture. The visualization is characterized by
2 parts. In the first part, the features are visualized by using feature graphs like cluster
feature graphs, representative feature graphs. The correlation between features is explored
using correlation heatmaps. The feature graphs are depicted in the Implementation chapter
(section 4.2.1 to 4.2.4). The second part of the visualization is performed by plotting data
points of the reduced feature space using different standard multi-dimensional visualization
methods. The following are some of the visualization methods used in our approach.

3.6.1 Parallel Coordinate Plot

A parallel coordinate is used for plotting multivariate, numerical data. They are ideal for
comparing many variables or features together and identifying the relationships between
them. In this plot, each feature is given its own axis, and all the axes are placed in parallel
to each other. The axes are normalized to keep the scales uniform. Feature values are
plotted as a series of lines that connected across all the axes. It means that an entire path
going through all its axes represents a data point.

The parallel coordinate plot can quickly become cluttered if there are a lot of data
points spread across the axis. The best way to remedy this problem is through interactivity
and is done by a technique known as “Brushing” 17. Brushing highlights a selected line
or collection of lines while fading out all the others. It enables us to isolate sections of
the plot a user is interested in while filtering out the noise. Another interactivity mode is
“Dragging”. It enables to drag a feature axis from one position to another while rearranging
the other axes automatically. Reordering by dragging helps to perceive the relationships
between adjacent variables and also facilitate in discovering patterns or correlations across
variables.

17https://datavizcatalogue.com/methods/parallel_coordinates.html

https://datavizcatalogue.com/methods/parallel_coordinates.html

3.6 Visualization Phase 43

An example of the parallel coordinate plot is shown in Figure 3.11.

Figure 3.11: The Parallel Coordinate Plot

3.6.2 Scatterplot Matrix

A scatterplot matrix is a collection of scatterplots organized in a matrix format. Each
scatterplot shows the relationship between a pair of variables. If there are K variables, the
scatter plot matrix will have K rows and K columns, and the ith row and jth column of the
matrix is a plot of Xi versus Xj

18. Brushing is an interaction technique that highlights
points based on linked selections across multiple views in a scatterplot matrix. It can be
particularly useful for exploring relationships in multi-dimensional data.

18https://www.jmp.com/support/help/14-2/scatterplot-matrix.shtml

https://www.jmp.com/support/help/14-2/scatterplot-matrix.shtml

44 3 Solution

An example of the scatterplot matrix is shown in Figure 3.12.

Figure 3.12: The Scatterplot Matrix

3.6.3 Grouped and Stacked Bar Charts

A grouped bar chart, also known as clustered bar graph or multi-set bar chart, is a type
of bar graph that is used to represent and compare different categories of two or more
groups 19. The categories are grouped and arranged side-by-side. The bar clusters make
it easy to interpret the differences inside a group, and even between the same category
across groups. The interactive bar chart enables zoom, scroll, and pan different sections of
the chart. The tooltips help to determine the exact values of the bar plots, and the color
scheme facilitates interpreting the bars inside the group. The grouped bar chart is shown
in Figure 3.13.

A stacked bar chart is another variant of the bar chart. In the stacked bar chart, parts
of the data are stacked on top of each other, where each bar displays a total amount,
broken down into sub-amounts 20. Equivalent subsections are plotted in the same color in

19https://datavizproject.com/data-type/grouped-bar-chart/
20https://datavizcatalogue.com/methods/stacked_bar_graph.html

https://datavizproject.com/data-type/grouped-bar-chart/
https://datavizcatalogue.com/methods/stacked_bar_graph.html

3.6 Visualization Phase 45

each bar. This makes it easy to compare both the whole picture and the components of
each bar. An example stacked bar chart is shown in Figure 3.14.

Figure 3.13: The Grouped Bar Chart

Figure 3.14: The Stacked Bar Chart

46 3 Solution

3.6.4 3D Scatterplot

The 3D scatter plot displays trivariate points plotted in an X-Y-Z grid. It is particularly
useful for investigating the relationships among these variables 21. A fourth variable can
be set to correspond to the color of the markers, thus adding yet another dimension to the
plot. It enables us to visualize correlations between different variables in a 3D space. The
interactivity is achieved by rotating the axes so that the data points can be investigated
from different angles. The basic interactive modes like zoom, expand, tooltips allow the
user to understand different aspects of the data in a visually cognizant way. A sample 3D
scatterplot is shown in Figure 3.15.

Figure 3.15: The 3D Scatterplot

21https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/
NCSS/3D_Scatter_Plots.pdf

https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/3D_Scatter_Plots.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/3D_Scatter_Plots.pdf

Chapter 4

Implementation

This chapter describes the implementation details of all the 3 phases in the proposed
solution. It consists of various functions, algorithms, and their descriptions required to
carry out the steps in different phases of the solution. The entire implementation is carried
out in R version 3.4.3 and uses the packages of R to perform different sub-operations.
An Integrated Development Environment (IDE) for R known as Rstudio is used to write
and organize the code. Throughput this chapter, we have used the automobile dataset,
which is described in the Use case Scenario (Chapter 1, Section 1.3) to carry out the
implementation.

As described in the previous chapter, the 3 phases of the system architecture are :

1. Ingestion Phase

2. Processing Phase

3. Visualization Phase

4.1 Ingestion Phase

This phase ingests and parses the dataset to create the data model as required by our
approach. Since we have considered the automobile dataset, the functions described here
are used to deal with the corresponding automobile data. There are 4 main steps in the
ingestion phase:

1. Data Cleaning

2. Data Pre-processing

3. Data Imputation

4. Data Segregation

47

48 4 Implementation

4.1.1 Data Cleaning

Before cleaning the data, it is necessary to read the data and store it in a format that can
be used for processing. Since we have the automobile data in CSV format, we can read it
and store it as a dataframe. A dataframe in R is a table or a two-dimensional array-like
structure in which each column contains values of one variable, and each row contains one
set of values from each column 1. A screenshot of the automobile dataframe in R is shown
below:

Figure 4.1: The Automobile Dataframe

The major challenge in data cleaning is to deal with missing values. The percentage
of missing values varies throughout the features. We have used the rules mentioned in
Chapter 3, Section 3.4.1, to clean the dataset. The other challenge is to identify the
features that are unique for all data points but is insignificant and can be removed. For
example, the automobile dataset has a value for every row known as rowID. This column
can be removed because it won’t have correlations with any other column.

For data cleaning, we have used 3 built-in R packages; tidyverse, dplyr and janitor. The
tidyverse is a collection of R packages designed for data science 2. It is the most powerful
collection of R packages for preparing, wrangling, and visualizing data. The dplyr package
is a subset of tidyverse package which is used for data wrangling and transformation. It
contains various operations like select, filter, count the number of rows and columns in
the dataframe. The janitor package 3 contains a function called "remove_empty", which is
used to remove all empty or NA rows and columns. The rest of the function implements
user-defined functions to clean the data.

1https://www.tutorialspoint.com/r/r_data_frames.htm
2https://urlzs.com/rsDdF
3https://www.rdocumentation.org/packages/janitor/versions/1.2.0

https://www.tutorialspoint.com/r/r_data_frames.htm
https://urlzs.com/rsDdF
https://www.rdocumentation.org/packages/janitor/versions/1.2.0

4.1 Ingestion Phase 49

The following function "dataClean" is used to perform data cleaning:

Load the required libraries
library(tidyverse)
library(dplyr)
library(janitor)

dataClean <- function (){
Read the data
data <- read.csv("AutoData.csv", header=T, na.strings=c("","NA"))
total_rows <- nrow(data) # Total rows in the dataframe
total_cols <- ncol(data) # Total Columns in the dataframe
filtered_cols <- data

Remove all empty/NA rows and columns
removeAllEmptyCols <- remove_empty(filtered_cols , which = c("rows

", "cols"))

Remove columns that contains more than 60 percent NA values
removeNACols <- removeAllEmptyCols[, colMeans(is.na(

removeAllEmptyCols)) <= .4]

Remove Columns that contains all Unique values
removeUniqueCols <- removeNACols[, sapply(removeNACols , function(

col) length(unique(col)) > 1)]

Loop to identify duplicate values and removing them.
allCols <- colnames(removeUniqueCols)
dupCol <- c()
for(i in 1:ncol(allCols)) {

colName <- allCols[i]
value <- "Desc"
if(grepl(value , colName)){

if(nlevels(allCols[,i]) == nlevels(allCols[,i-1]))
dupCol <- c(dupCol , i-1)

}

}
allCols <- allCols[,-(dupCcol)]
cleanData <- allCols

return the Cleaned Data
return(cleanData)

}

50 4 Implementation

4.1.2 Data Pre-processing

The raw data often contains special symbols or extra spaces. The challenge in data pre-
processing is to identify the uninterpretable the special symbols and extra spaces in the data
and remove them. The type conversion is also an important aspect in the pre-processing
as it ensures the segregation can be performed properly in the next step. The steps in data
pre-processing are mentioned in section 3.4.2.

The data pre-processing is performed by the user-defined "dataPreprocess" function.
It takes the cleanData dataframe as an argument which is obtained from the previous step.
The dplyr package loaded earlier is applied on the columns to check the datatype. It has a
built-in function known as "select_if" that selects a value based on the condition. In our
code, we have specified 2 conditions; “as.numeric” and “as.factor” to check for numerical and
categorical datatypes respectively. The base package 4 is used to detect special characters as
given by the regular expression. The built-in "gsub" function is given an argument [:punct:]
that stands for punctuation characters. It removes the special characters and returns the
dataframe. The "trimws" is a built-in function also present in the base package used to
remove whitespaces. The argument "l" in the function is used for the leading whitespaces.
The "tolower" function given by stringr package 5 is used to convert the categorical values
to lower case. The processed dataframe is combined and returned, as shown in the following
function snippet below:

Load the required libraries
library(base)
library(stringr)

dataPreprocess <- function(cleanData) {
Check the data type , as.numeric for numerical and as.factor for

categorical
num_cols <- select_if(cleanData , as.numeric)
cat_cols <- select_if(cleanData , as.factor)

Regular expression to remove the special characters
cat_cols <- as.data.frame(gsub("[[: punct :]]", "", as.matrix(cat_

cols)))
Removes leading whitespace from character strings.
trimws(cleanData , "l")
Converts the categorical values into lower case
cat_cols <- tolower(cat_cols)
Bind and return the processed Data
processedData <- cbind(num_cols , cat_cols)
return(processedData)

}

4https://www.rdocumentation.org/packages/base/versions/3.6.1
5https://www.rdocumentation.org/packages/stringr/versions/1.4.0

https://www.rdocumentation.org/packages/base/versions/3.6.1
https://www.rdocumentation.org/packages/stringr/versions/1.4.0

4.1 Ingestion Phase 51

4.1.3 Data Imputation

The data imputation is carried out by the method known as “Fast imputation of missing
values”. This method is given by the “missRanger” package 6 in R. It takes the processData
as an argument and performs the imputation. A few more parameters are also set to get
accurate results. The “seed” parameter is set to initialize the random generator. Since the
imputation method uses chained random forests, the “num.trees” parameter specifies the
number of decision trees to be used. The “pmm.k” parameter is used to specify the number
of candidate non-missing values to sample from in the predictive mean matching step. The
imputation function is shown below:

Load the required library
library(missRanger)

imputeData <- function (){
imputedData <- missRanger(processedData , pmm.k = 3, seed =

75757, num.trees = 80)
}

4.1.4 Data Segregation

The dplyr package loaded earlier is used to segregate the dataframe based on the datatype.
The "select_if" function is based on two conditions namely; “is.numeric” and “is.factor”.
Additionally, a constraint is defined to check the number of factors in each column of the
dataframe. Factors are variables in R, which take on a limited number of different values
and are also called categorical variables. In our case, we have specified an upper bound
of 10, which means the factors lower or equal to 10 are also considered as categorical
variables. Finally, the dataframe is segregated to generate two dataframes “finalCatCols”
and “finalNumCols” respectively. The segregation function "segData"is shown below:

segData <- function (){
Segregate the data based on data type
num_cols <- select_if(imputedData , is.numeric)
cat_cols <- select_if(imputedData , is.factor)

finalCatCols <- cat_cols
#Specify the upper bound on the number of factors (10) to be

considered as numerical
finalNumCols <- num_cols[, sapply(num_cols , function(col) length(

unique(col))) > 10]

6https://www.rdocumentation.org/packages/missRanger/versions/2.1.0/topics/
missRanger

https://www.rdocumentation.org/packages/missRanger/versions/2.1.0/topics/missRanger
https://www.rdocumentation.org/packages/missRanger/versions/2.1.0/topics/missRanger

52 4 Implementation

The factors lower than or equal to 10 are considered as
categorical

if(ncol(finalNumCols) != ncol(num_cols)){
finalCatCols <- cbind(cat_cols , num_cols[, sapply(num_cols ,

function(col) length(unique(col))) <= 10])
}

}

This completes the description of functions in the ingestion phase. The data model
consisting of categorical and numerical feature groups is created in the form of 2 dataframes.
The “finalCatCols” dataframe consists of categorical features, whereas the “finalNumCols”
dataframe consists of numerical features. The two dataframes are shown in Figure 4.2 and
4.3.

Figure 4.2: The finalCatCols Dataframe

4.2 Processing Phase
This phase contains the functions and algorithms to perform unsupervised feature clus-
tering and selection. It takes the segregated dataframes (finalCatCols and finalNumCols)
from the ingestion phase and proceeds to carry out the following main steps:

1. Feature Correlations

2. Identifying Threshold Coefficient

3. Applying Clique Cover Algorithm

4. Representative Feature Selection

4.2 Processing Phase 53

Figure 4.3: The finalNumCols Dataframe

4.2.1 Feature Correlations

This is the first step to construct the feature dependency graph. Feature correlations are
used as edge-weights in the feature graph. As described in the Section 3.5.1, a couple of
correlation measures are used in this step. The Maximal Information Coefficient (MIC) is
used on the “finalNumCols” dataframe consisting of numerical feature groups. The Chi-
square test of association followed by Cramer’s V is used on the “finalCatCols” dataframe
consisting of categorical feature groups. The output of this step is a couple of square
weighted adjacency matrices consisting of correlations between the features in the respec-
tive feature group. We have named “resultMIC” and “resultCramer” as the two resultant
matrices. The algorithm for the feature correlations is shown in Algorithm 2.

Algorithm 2: Algorithm for Feature Correlations
Procedure : featureCorrelations;
Input : Numerical and Categorical feature groups (finalNumCols and
finalCatCols).
Output : resultMIC and/or resultCramer.
if finalNumCols has more than 1 feature then

resultMIC <- numCorr(finalNumCols)
end
else if finalCatCols has more than 1 feature then

resultCramer <- catCorr(finalCatCols)
end

54 4 Implementation

Maximal Information Coefficient (MIC)
To apply MIC on every pair of numerical feature groups, a package in R known as

minerva 7 is used. It is a wrapper for “minepy” implementation of Maximal Information-
based Nonparametric Exploration statistics (MINE). One of the built-in function present
in minerva is "mine". The mine function takes the dataframe as an argument and pro-
duces a number of results like MIC, Maximum Asymmetry Score (MAS), Maximum Edge
Value (MEV). The process of pairwise determining MIC on the entire dataframe can be
expensive. To cope with that, a package called parallel 8 is used, that provides the sup-
port for parallel computation. The "detectCores" function in the parallel package is used
to assign the maximum number of CPU cores on the current host to carry out the MIC
process. The code snippet of "numCorr" function to pass the “finalNumCols” dataframe is
shown below:

Load the required libraries
library(minerva)
library(parallel)

numCorr <- function(finalNumCols){
allMine <- mine(finalNumCols , n.cores= detectCores () , var.thr

=0.0, use="pair", est="mic_e")
resultMIC <- allMine$MIC

return resultMIC
}

The resultMIC matrix obtained after applying the above function is shown in Figure
4.4.

Figure 4.4: The resultMIC Matrix

7https://cran.r-project.org/web/packages/minerva/minerva.pdf
8https://www.rdocumentation.org/packages/parallel/versions/3.6.1

https://cran.r-project.org/web/packages/minerva/minerva.pdf
https://www.rdocumentation.org/packages/parallel/versions/3.6.1

4.2 Processing Phase 55

Chi-Square Test of Association and Cramer’s V
To carry out Chi-square tests, a package in R known as MASS 9 needs to be installed.

This package contains various functions and datasets to carry out many applied statis-
tics operations. It has a built-in "table" function to generate the contingency tables. It
contains a function "chisq.test" that takes the contingency table as an argument and
outputs the results of the Chi-square test of association. Since we are interested in de-
termining the Cramer’s V between every pair of categorical variables, another package is
known as DescTools 10 is used. This package is a collection of basic statistic functions, as-
sociation measures, and wrappers for efficiently describing data. The association function
"PairApply" takes the dataframe and the operation to be applied as a parameter. When
passed “CramerV” as the operation parameter, the PairApply function performs the Chi-
square test of association followed by Cramer’s V on the entire dataframe and produces
the result in the matrix format. The code snippet for the function "catCorr" is shown
below:

Load the required libraries
library(MASS)
library(DescTools)

catCorr <- function(finalCatCols){
resultCramer <- PairApply(finalCatCols , CramerV , symmetric =

TRUE)

return resultCramer
}

The resultCramer matrix obtained after applying the above function is shown in Figure
4.5.

Figure 4.5: The resultCramer Matrix

This completes the implementation of the feature correlation step for both the feature
9https://www.rdocumentation.org/packages/MASS/versions/7.3-47

10https://www.rdocumentation.org/packages/DescTools/versions/0.99.19

https://www.rdocumentation.org/packages/MASS/versions/7.3-47
https://www.rdocumentation.org/packages/DescTools/versions/0.99.19

56 4 Implementation

groups. Both the matrices obtained, i.e., resultMIC and resultCramer are square weighted
adjacency matrices. The resultant graph obtained by considering such a matrix is a com-
plete weighted feature graph because every pair of feature nodes is connected by a unique
edge. The complete feature graph corresponding to the resultCramer matrix is shown in
Figure 4.6.

Figure 4.6: The Categorical Complete Feature Graph

4.2.2 Identifying Threshold Coefficient

This step is used to prune out the weak associations from the complete feature graph.
The K-Nearest Neighbour algorithm is implemented to determine the K strongest neigh-
bors, but instead of using the distance, the correlation coefficient is used as a way to
determine the threshold. The value of K is determined by taking the square root of the
number of features present in the respective feature groups. A user-defined function called
"makeAffinity" is defined. It is supposed to take a couple of parameters; the correlation
matrix(resultCramer/resultMIC) and the value of K. The function returns an affinity ma-
trix. The affinity matrix contains all the nodes, but the connections below the threshold
are replaced by zeros and are symmetric in nature. It is the matrix representation of the
feature dependency graph, which is obtained by pruning the weak edges from the complete
graph. The algorithm for identifying the threshold coefficient is given in Algorithm 3.

4.2 Processing Phase 57

Algorithm 3: Algorithm for Identifying Threshold Coefficient
Procedure : makeAffinity;
Input : result (resultMIC and/or resultCramer) and K.
Output : affinity matrix (affMat).
Step 1: totalNodes ←length(result).
Step 2: if K > totalNodes then

affMat <- result
end
else

/* Determine strong connections for every feature node */
For each i-th feature in totalNodes.

strongConnections ←sort(result[i,], decreasing=TRUE)[1:K]
/* Make the affinity matrix symmetric in nature */

For each s-th feature in strongConnections.
j <- which(result[i,] == s)
affMat[i,j] <- result[i,j]
affMat[j,i] <- result[i,j]

end

The code snippet for "makeAffinity" function is shown below:

makeAffinity <- function(result , K) {
totalNodes <- length(result [,1])
if (K >= totalNodes) { # fully connected

affMat <- result
} else {

affMat <- matrix(rep(0, totalNodes ^2), ncol= totalNodes)
for(i in 1: totalNodes) { # for each line

only connect to those points with larger similarity
strongConnections <- sort(result[i,], decreasing=TRUE)[1:K]
for (s in strongConnections) {

j <- which(result[i,] == s)
affMat[i,j] <- result[i,j]
affMat[j,i] <- result[i,j] # to make an undirected graph ,

ie, the matrix becomes symmetric
}

}
}
return affMat

}

58 4 Implementation

The feature dependency graph obtained by pruning the edges from the complete graph
is shown in Figure 4.7.

Figure 4.7: The Categorical Feature Dependency Graph

4.2.3 Applying Clique Cover Algorithm

The Clique Cover is a graph clustering algorithm used to cluster the nodes in the feature
dependency graph. The algorithm works on the graph object in order to determine cliques
and maximal cliques in the graph. The graph object is a vector representation of the
adjacency matrix where each element of the vector denotes the connections between the
nodes 11. The algorithm proceeds by generating the graph object from the affinity matrix.
Then it implements different functions to determine cliques, maximal cliques, number of
maximal cliques. It then calculates the weight of each maximal clique and determines the
maximal clique having the maximum weight. The output of the algorithm is the set of
clustered nodes. The “makeAffinity” and the “cliqueCover” algorithm are recursively ap-
plied to generate clusters of features of different sizes, as described in Chapter 3 Algorithm
1. The clique Cover algorithm is given in Algorithm 4.

11https://www.r-bloggers.com/r-graph-objects-igraph-vs-network/

https://www.r-bloggers.com/r-graph-objects-igraph-vs-network/

4.2 Processing Phase 59

Algorithm 4: Clique Cover Algorithm
Procedure : cliqueCover;
Input : affMat.
Output : clusterNodes.
/* Create the graph object */
Step 1: graphObj ← generate_graph(affMat)
/* Determine the cliques */
Step 2: getCliq ← cliques(graphObj)
/* Determine the maximal cliques */
Step 3: getMaxCliq ← max_cliques(graphObj, getCliq)
/* Determine the number of maximal cliques */
Step 4: countMaxCliq ← count(getMaxCliq)
/* Call the initialize function to set all weights as null */
Step 5: initialize()
/* Call find_weights function to determine the weight of each maximal clique */
Step 6: weightOfCliq ← find_weights(countMaxCliq, affMat)
/* Determine the maximal clique having maximum weight */
Step 7: maxWeight ← get_max_weight(weightOfCliq)
/* Get cluster nodes Ids from the maximal clique having the maximum weight */
Step 8: clusterNodes ← getMaxCliq[maxWeight]

The igraph 12 package is used to generate graph objects. It provides a set of data
types and functions for the implementation of graph algorithms, handling large graphs,
and performing network analysis. The package contains a built-in function called
"graph_from_adjacency_matrix" that generates the graph object. The code snippet to
generate graph objects is shown below:

Load the required libraries
library(igraph)

generate_graph <- function(affMat){
graphObj <- graph_from_adjacency_matrix(affMat , mode = "

undirected", weighted = TRUE)
return(graphObj)

}

The package also contains the functions to determine the cliques and maximal cliques.
The "clique" function takes the graph object, returned by the above function, as an
argument. It also asks for two parameters “min” and “max”, which denotes the lower and
upper limit on the size of the cliques to find. The min and max parameters are set to NULL
by default, which means to find cliques of all sizes. The "max_clique" function takes the
graph object along with a “subset” parameter as an argument. The subset parameter is

12https://www.rdocumentation.org/packages/igraph/versions/0.3.1

https://www.rdocumentation.org/packages/igraph/versions/0.3.1

60 4 Implementation

a vector of nodes which is returned by the clique function. It implies that the maximal
clique is the subset of the clique. The function template is shown below:

Load the required libraries
library(igraph)

getCliq <- cliques(graphObj , min = NULL , max = NULL)
getMaxCliq <- max_cliques(graphObj , min = NULL , max = NULL , subset =

getCliq)
countMaxCliq <- count(getMaxCliq)

A few more functions are defined, which are needed to carry out the Clique Cover
clustering algorithm. The "find_weights" function is used to determine the weight of all
the maximal cliques present in the graph. The function iteratively calls another function
"find_each_weight" to determine the weight of each maximal clique and update the
"wt_sum" vector to keep a track of the weights.

find_weights <- function(countMaxCliq ,affMat){
for (maxCliq in c(1: countMaxCliq)) {

find_each_weight(maxCliq ,affMat)
}
return(wt_sum)

}

The "initialize" function is used to reset the counter and create an empty vector
"wt_sum" for each iteration of maximal clique determination.

initialize <- function (){
Counter <- 0
wt_sum <- vector ()

}

The "find_each_weight" function considers each maximal clique and determines the pair
of vertices that are connected by an edge. It sums up the weight of the edges identified in
the maximal clique. The summed up weight is then appended to empty vector iteratively.

find_each_weight <- function(c, mat){
cliq <- get_cliq[[c]]
vertex_mat <- combn(cliq , 2)
transposeVer <- t(vertex_mat)
cliqSum <- sum(mat[transposeVer])
}
Counter <- .GlobalEnv$Counter + 1
wt_sum[[Counter]] <- cliqSum

}

Once the weight of all the maximal cliques are determined, the "get_max_weight"
function determines the maximum weight. It takes vector of weights as an input argument
and returns the index having maximum weight.

4.2 Processing Phase 61

get_max_weight <- function(wt_sum){
maxWeight <- max(wt_sum)
return(maxWeight)

}

The "get_cluster_nodes" takes the index of the maximum weight from the previous
function and returns the maximal clique nodes with the maximum weight.

get_cluster_nodes <- function(maxWeight){
clusterNodes <- getMaxCliq[maxWeight]
return(clusterNodes)

}

The cluster graph obtained after after applying Clique Cover algorithm is shown in
Figure 4.8.

Mfr.Name

Vrfy.M.C

Carline

Division

M.E...

X.1.M.S

X..Cyl

Transmssn Trns.Dsc

X.Gears

Ar.A.M.D

Cover 1

Cover 2

Cover 3

Cover 4

Figure 4.8: The Categorical Cluster Graph

62 4 Implementation

The Figure 4.8 shows the cluster graph made from the categorical features. After ap-
plying the Clique Cover algorithm, the complete feature graph (Figure 4.6) is transformed
into the cluster graph having 4 clusters or covers of different sizes.

4.2.4 Representative Feature Selection

The Representative Feature is selected by determining the Eigenvector Centrality score
of each node present in the cluster. The node having the maximum score is termed as
the Representative Feature. The algorithm requires the clusterNodes(obtained from the
previous step) and the initial feature correlation matrix as the two input parameters.
It proceeds by generating the graph object of individual clusters. It then determines
the Eigenvector Centrality scores of each node present in the clustered graph object. It
determines the node having the maximum score and returns the Representative Feature.
The algorithm for Representative Feature selection is given in Algorithm 5:

Algorithm 5: Algorithm for Representative Feature Selection
Procedure : repFeatSelection;
Input : clusterNodes and result (resultMIC and/or resultCramer).
Output : Representative Feature (repFeature).
/* Generate graph object for each cluster */
Step 1: clusGraphObj <- individualClusterGraph(clusterNodes, result)
/* Determine the Eigenvector Centrality score and identify the Representative

Feature */
Step 2: repFeature <- repFeatureSelection(clusGraphObj)

In our approach, a function called "individualClusterGraph" is defined. It takes
two arguments; the node Ids of each cluster and the result from the Feature correlation
matrix. It first creates an empty matrix having the same size as the number of nodes in
each cluster. It then populates the matrix by using a subset of the feature correlation ma-
trix(resultCramer/resultMIC) corresponding to the node Ids of each cluster. The function
"graph_from_adjacency_matrix" provided by the igraph package, is used to generate the
graph object from the adjacency matrix. The pseudocode of the function is shown below:

individualClusterGraph <- function(clusterNodeIds , result){

Initialize an empty matrix of same size as each cluster.
currClus <- matrix(data=NA, nrow=length(clusterNodeIds), ncol=

length(clusterNodeIds)

4.2 Processing Phase 63

Populate the matrix with the entities from correlation matrix
for (r in 1:nrow(currClus)) {

for (c in 1:ncol(currClus))
currClus[r,c] = result[currClus[r],currClus[c]]

}

Generate the graph object from the matrix
clusGraphObj <- graph_from_adjacency_matrix(currClus , mode = "

undirected", weighted = TRUE)

return(clusGraphObj)

}

The Eigenvector Centrality is calculated on the graph object determined from the above
function. The igraph package of R provides a function called "eigen_centrality" that
calculates the centrality scores. It takes the graph object as an argument and requires
to set a few parameters. The “directed” parameter is set as False because we have the
undirected feature graph. The “scale” parameter is set to True in order to scale the result
to have a maximum score of one. The “weights” parameter is used to give the edge-weights
for calculating the weighted Eigenvector Centrality score of the nodes. The node having
the maximum score is considered as the Representative Feature. The code snippet of
"represFeatureSelection" is shown below:

represFeatureSelection <- function(clusGraphObj){

Determine the Eigenvector Centrality scores of the nodes in the
cluster graph

eigenScores <- eigen_centrality(indiClusGraph , directed=FALSE ,
scale= TRUE , weights=E(indiClusGraph)$weight)$vector

Select the node with the maximum score
repFeature <- which.is.max(eigenScores)

return(repFeature)
}

The Representative Feature graph is shown in Figure 4.9. As seen, the graph is less
cluttered as compared to the complete Feature graph (Figure 4.6). Both the graphs show
the features from the categorical feature groups, but the Representative Feature graph
only shows the important nodes and their corresponding edges, making it more clear and
interpretable.

64 4 Implementation

Ar.A.M.D

TransmssnCarline

X.1.M.S

Representative Feature from Cluster 1

Representative Feature from Cluster 2

Representative Feature from Cluster 3

Representative Feature from Cluster 4

Figure 4.9: The Representative Feature Graph

4.3 Visualization Phase
The visualization phase is characterized by 2 aspects. First, we have visualized the features
and their correlations using feature graphs such as the complete feature graph (Figure
4.6), cluster feature graph (Figure 4.8), and representative feature graph (Figure 4.9). In
the second part, the data points corresponding to the set of Representative Features are
visualized using various standard methods. In this section, the implementation of some of
the visualization methods in R is described.

4.3.1 Parallel Coordinate Plot

The parcoords library 13 in R create a well designed and interactive parallel-coordinates
chart. It is based on a similar fashion as the d3 parallel plot. It takes the dataframe
as the argument and allows interactivity by setting the parameters. The “brushMode”
parameter enables the brushing on the axis of the parallel coordinate. It mitigates the
cluttering by highlighting a selected line or collection of lines while fading out all the others.
The “reorderable” parameter allows dragging the axis while rearranging the other axes
automatically. The function "renderParcoords" is a built-in function in the parcoords
library that is used to render a parallel coordinate plot. The pseudocode for creating
parallel coordinates is shown below :

13https://github.com/timelyportfolio/parcoords

https://github.com/timelyportfolio/parcoords

4.3 Visualization Phase 65

library(parcoords)
renderParcoords(

parcoords(selectedFeatureDF , rownames=F,
brushMode="1d" ,reorderable = TRUE)

)

The Parallel Coordinate Plot generated for the selected datasets are shown in the
Evaluation chapter (Section 5.7). We have used the Parallel Plot as a visualization method
for performing qualitative evaluation of our proposed approach.

4.3.2 Scatterplot Matrix

It is a collection of scatter plots displayed in a matrix format. The pairsD3 library 14 is
used to create an interactive matrix of scatterplots. The coordinates of points given as
numeric columns of a matrix or dataframe. The built-in function "renderPairsD3" can
take a few additional parameters for accurate rendering. The names of the variables are
set in the “labels” parameter. The magnification of the plotting symbol is set by the “cex”
parameter. There are several other parameters like theme, opacity, tooltip, width, margin,
which are set to default values and can be easily customized.

library(pairsD3)
renderUI ({ pairsD3Output("pD3", width = "850px", height = "650px")})

output$pD3 <- renderPairsD3 ({ pairsD3(selectedNumDF ,cex =3, labels=
colnames(selectedNumFeat))

})

4.3.3 Grouped and Stacked Bar Charts

The grouped and stacked bar charts are the two variations of the bar chart that is used to
represent and compare different categories of two or more groups. The grouped bar charts
place the categories side by side, whereas the stacked bar chart places the categories on top
of each other like the stack. The plotly library 15 in R can be used to plot both these charts.
It provides a function known as "plot_ly" which maps the R objects to plotly.js, a web-
based interactive charting library. To generate a grouped or stacked bar charts, a series
of functions is pipelined and called. The first function is the default function "plot_ly"
that takes the dataframe and sets the x-axis. In the vertical bar chart, the y-axis is set
as count by default. The pipelined function "add_trace" takes the additional columns to
plot along with the parameter to set the color combinations. The final pipelined function
is "layout" that sets the title name, width, height, and margin. The change in “barmode”
parameter in the layout function decides the layout. If the barmode is set to “group”, it

14https://www.rdocumentation.org/packages/pairsD3/versions/0.1.0
15https://www.rdocumentation.org/packages/plotly/versions/4.9.0/topics/plot_ly

https://www.rdocumentation.org/packages/pairsD3/versions/0.1.0
https://www.rdocumentation.org/packages/plotly/versions/4.9.0/topics/plot_ly

66 4 Implementation

renders a grouped bar chart, and if it is set to “stack”, it renders a stacked bar chart. The
pseudocode is shown below:

library(plotly)
plot_ly(finalCatCols , x = finalCatCols [,1], type = "bar") %>%

add_trace(y = finalCatCols [,2], name = "y", z = finalCatCols
[,3], , name = "z") %>%

layout(yaxis = list(title = "Count"),
xaxis = list(title = xTitle),
barmode = group/stack)

})

4.3.4 3D Scatterplot

The 3D scatter plot uses the X-Y-Z grid to display trivariate points. The “plotly” package
in R can be used to create 3D scatter plots. The default function"plot_ly" takes the
dataframe and the 3 numerical axes to plot the points in an X-Y-Z plane. It is then
pipelined with the "add_markers" function, which takes the 4th variable to set as the
color of the points. The color scaling can also be done in this function. The final pipelined
function is the "layout" function, which consists of the axis labels, width, height, margin,
and annotations. The values are set by default, and it can be customized easily.

library(plotly)
plot_ly(finalNumCols , x = finalNumCols [,1], y = finalNumCols [,2], z

= finalNumCols [,3])%>%
add_markers(marker = list(color = finalCatCols [,4], colorscale

= c(’#FFE1A1 ’, ’#683531 ’), showscale = TRUE)) %>%
layout(scene = list(xaxis = list(title = xTitle),

yaxis = list(title = yTitle),
zaxis = list(title = zTitle)),

annotations = list(x = 1.13, y = 1.05,
text=colorText ,
xref = ’’,
yref = ’’,
showarrow = FALSE

))
})

4.4 User Interface 67

4.4 User Interface

An interactive UI is designed to carry out the processes and visualize the results. A good
User Interface Design presents a seamless blend of visual design, interaction design, and
information architecture. In our thesis, an interactive UI is designed in the form of a dash-
board. We have used a couple of R packages shinydashboard 16 and dashboardthemes 17

to design the UI. Shinydashboard is made on top of another package called “shiny”, which
is used to build interactive web applications. The shinydashboard has a default layout
consisting of the sidebar, header, and the body. In our approach, the sidebar panel con-
tains various operation links such as selecting the dataset, visualizing the cluster graph,
results of feature selection, and visualizing them using different modes. The results of the
operations are displayed in the dashboard body. The dashboardtheme package is used to
customize the appearance of the Shiny dashboard. It provides a number of pre-defined
themes that create a decent visual appearance to the dashboard.

Figure 4.10: The Application Homepage

The shiny application is needed to be split into two separate files, ui.R and server.R.
The ui.R contains the code for UI layout like the width of the sidebar, the description of
the menu items, the items in the drop-down list, the checkbox and radio button, the size
of the dashboardbody, etc. The code of ui.R is automatically parsed to a valid HTML-CSS
code by the shiny application at the time of rendering. Each of the menu items or the
buttons in UI is linked to a component in server.R, which is responsible for producing the
result. The server.R contains all the algorithmic functions described in the processing and

16https://www.rdocumentation.org/packages/shinydashboard/versions/0.7.1
17https://www.rdocumentation.org/packages/dashboardthemes/versions/1.0.5

https://www.rdocumentation.org/packages/shinydashboard/versions/0.7.1
https://www.rdocumentation.org/packages/dashboardthemes/versions/1.0.5

68 4 Implementation

visualization phase and uses those to create the results which are finally rendered by the
ui.R. Figure 4.10 shows the User Interface layout designed for our approach.

The UI starts with the home page that describes the operations performed by our
approach. The layout is basically divided into 3 parts. The first part facilitates the user
to select the dataset, view the data in tabular format, and to get a brief summary of the
features in the data. The second part enables the user to explore the features using different
feature graphs. The feature correlations can be visualized using correlation heatmap. A
package called d3heatmap 18 is used to create the heatmap. The cluster results and the
set of Representative Features can be visualized using tabular format and graphical format
(Cluster feature graphs and Representative feature graphs). There are options to examine
clustered features by visualizing individual clusters separately. The final part facilitates
the user to visualize the data points in the reduced feature space corresponding to the
Representative Features. The UI has tabs to display the data points using various plots
like Parallel Coordinate Plots, Scatterplot Matrix, Grouped and Stacked Bar Charts, etc.
The interactivity like zoom, brush, tooltips is enabled for all the plots by setting the
parameters as described in section 4.3.

All the feature graphs are created using a package called VisNetwork 19. It is a network
visualization package created using vis.js, a javascript library. It provides various options to
customize the graph like adding color, shape, opacity of the nodes, adjusting the thickness
of the edges with respect to the values, adding tooltips on the nodes and edges, customizing
legends, zoom and drag functionality.

The following figures show different stages of the User Interface. The correlation
heatmap between the categorical features of the automobile dataset is shown in Figure
4.11. The Cluster feature graph and the Representative feature graph in the UI layout are
shown in Figure 4.12 and 4.13, respectively. The Parallel Coordinate Plot in Figure 4.14
shows the data points in the reduced feature space.

18https://www.rdocumentation.org/packages/d3heatmap/versions/0.6.1.2
19https://datastorm-open.github.io/visNetwork/

https://www.rdocumentation.org/packages/d3heatmap/versions/0.6.1.2
https://datastorm-open.github.io/visNetwork/

4.4 User Interface 69

Figure 4.11: Categorical Correlation
HeatMmap in UI layout

Figure 4.12: Cluster Feature Graph in UI
layout

Figure 4.13: Representative Feature
Graph in UI layout

Figure 4.14: Parallel Coordinate Plot in
UI layout

70 4 Implementation

Table 4.1 shows the list and description of R packages used in the implementation of
our proposed approach.

R Packages List
R Package Description
tidyverse Preparing, Wrangling and Visualizing Data
dplyr Data Transformation
janitor Remove all empty or NA rows and column
base Remove special characters and trim whites-

pace
stringr String processing
missRanger Fast Imputation of missing values
minerva To determine Maximal Information Coeffi-

cient
parallel Used for parallel computing
MASS Used to create contingency Table and calcu-

late Chi-square test
DescTools Used to pairwise determine Cramer’s V
igraph Generate graph objects, determine cliques

and maximal cliques
parcoords Generate interactive Parallel Coordinate
pairsD3 Generate Scatterplot Matrix
plotly Generate Grouped/Stacked Bar plots and 3D

Scatterplot
Shinydashboard Set the layout of dashboard
dashboardthemes Customize the appearance of the Shiny dash-

board
d3heatmap Create correlation heatmap
visNetwork Used for Graph Visualization

Table 4.1: The R Packages List used for Implementation

Chapter 5

Evaluation

In this section, our proposed approach is evaluated with respect to different existing ap-
proaches. We have considered several datasets and evaluation metrics to carry out the
performance analysis. The results in the form of tables and graphs are presented in this
chapter.

5.1 Experimental Setup

We have used a machine learning software, known as Weka [78], to carry out the evalua-
tion. It is free software licensed under the GNU General Public License. It has a collection
of machine learning algorithms written in Java for data mining tasks. The algorithms
can either be applied directly to a dataset or called from the Java code. Weka contains
tools for data pre-processing, classification, regression, clustering, feature selection, asso-
ciation rules, and visualization 1. Its main user interface is the Explorer. The interface
provides several panels to select and pre-process the dataset, apply different classification
and clustering algorithms, visualize the results in different formats.

In our experiments, we have used the Weka version 3.6 2. It requires a Java environment
to be set up. We have installed the Java version 1.8.0_211 on our host system in order to
run the Weka. The proposed approach is implemented in R version 3.4.3. The host is a
Windows 10 system having an Intel Core i5 processor with a collection of 4 cores clocking
at 2.20GHz.

5.2 Selection of Datasets

For the evaluation, we have considered high-dimensional datasets from various categories
having different numbers of features. The datasets also have different aspects like binary
class, multi-class, missing values, and skewed classes. It enables us to perform the stress

1https://towardsdatascience.com/data-mining-tools-f701645e0f4c
2https://www.cs.waikato.ac.nz/ml/weka/

71

https://towardsdatascience.com/data-mining-tools-f701645e0f4c
https://www.cs.waikato.ac.nz/ml/weka/

72 5 Evaluation

test of our approach corresponding to other existing approaches. The datasets are collected
from open source repositories like UCI Machine Learning 3, kaggle 4, and openml 5.

For the quantitative evaluation, the supervised datasets are selected because the class
labels are needed to evaluate the classification and clustering accuracy, and also for the
cost-sensitive analysis. The following steps are taken to create the data model for the
evaluation.

• Since our approach is unsupervised, we have removed the class labels from the selected
datasets.

• Our proposed approach and the existing feature selection methods are applied to the
unsupervised datasets.

• The class labels are then appended to the results obtained from each of the feature
selection approaches.

• The supervised reduced feature sets thus obtained are then used for quantitative
evaluation.

The following table shows the list of the selected datasets used for evaluation.

No Dataset Description No. of
Features

No. of
Classes

Missing
Values Source

1 Automobile Dataset 25 2 Yes UCI ML

2 Breast Cancer Dataset 30 2 (Skewed
Classes) No UCI ML

3 AutoUniv Dataset 39 8 No UCI ML

4 QSAR-Biodegradation
DataSet 41 2 Yes openml

5 Sonar Dataset 60 2 No Kaggle
6 Emotions Dataset 78 2 No openml
7 Robot-Failures Dataset 91 5 No openml

8 Spectrometer 125 2 (Skewed
Classes) Yes openml

9 Musk 168 2 No Kaggle

Table 5.1: Selected Datasets for Evaluation

3http://archive.ics.uci.edu/ml/datasets.php
4https://www.kaggle.com/datasets
5https://www.openml.org/

http://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets
https://www.openml.org/

5.3 Existing Approaches 73

5.3 Existing Approaches

Our proposed approach performs unsupervised feature clustering and selection. Therefore,
we have selected 5 existing unsupervised methods and evaluated our approach with respect
to them. The description of some of the existing methods is mentioned in Section 2.4. The
following are the 5 existing methods.

1. Laplacian Score for Feature Selection [5].

2. Spectral Feature Selection for Supervised and Unsupervised Learning [6].

3. l2,1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning(UDFS) [79].

4. Unsupervised Feature Selection Using Nonnegative Spectral Analysis(NDFS) [80].

5. Unsupervised feature selection for multi-cluster data(MCFS) [7].

5.4 Evaluation Metrics

5.4.1 Quantitative Evaluation

The reduced feature sets obtained from each approach are quantitatively evaluated using
the following metrics.

• Evaluation using Classification Accuracy - The accuracy of the reduced feature
sets are evaluated using classifiers- Naive Bayes 6, Support Vector Machine (SVM) 7,
Random Forests 8 and Logistic Regressions 9. The K-fold cross validation 10 is used
to evaluate the classifiers. The evaluation is carried out in the Weka Software corre-
sponding to above mentioned classifiers and the value of K is set to 10 in the K-fold
cross validation.

• Evaluation using Clustering Accuracy - The accuracy of the reduced feature sets
are evaluated using 2 clustering algorithms; K-means clustering 11 and Expectation
Maximization clustering [81]. The Clustering Accuracy (ACC) metric is used for
assessing the clustering quality. The number of clusters is set to the number of classes
present in the respective datasets. The Weka software has the meta panel known as
“ClassificationViaClustering” to perform such measures. The K-fold cross-validation
is again used, and the value of K is set to 10.

6http://www.statsoft.com/textbook/naive-bayes-classifier
7http://www.statsoft.com/textbook/support-vector-machines
8https://towardsdatascience.com/understanding-random-forest-58381e0602d2
9https://machinelearningmastery.com/logistic-regression-for-machine-learning/

10https://machinelearningmastery.com/k-fold-cross-validation/
11https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

http://www.statsoft.com/textbook/naive-bayes-classifier
http://www.statsoft.com/textbook/support-vector-machines
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/k-fold-cross-validation/
https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

74 5 Evaluation

• Evaluation using ROC Curves for cost-sensitive analysis - AUC - ROC curve
is a performance measurement for the classifier to represent the degree or measure
of separability. It tells how much model is capable of distinguishing between classes.
We have used Area Under The Curve (AUC) on the Receiver Operating Character-
istics (ROC) 12 curve for cost-sensitive analysis. It is used to perform the sensitivity
analysis when the class labels are skewed. For example, consider a reduced dataset
where 90% of the class labels are positive, and the remaining 10% are negative. Even
a bad classifier that predicts every instance as positive will also have at least 90%
accuracy. To overcome this, the ROC curve plots the false positive rate with re-
spect to the true positive rate and determines the Area Under the Curve (AUC).
The higher AUC signifies the better performance of the classifier corresponding to
relevant features in the dataset. We have considered all the classifiers mentioned
above and plotted the ROC curve for each of the reduced feature sets obtained from
different approaches.

• Evaluation in terms of the redundancy of the selected features - We have
used “Representation Entropy” [4] as a metric to evaluate the redundancy of the
selected features. The class labels are not needed to determine the Representation
Entropy. Let the eigenvalues of the d× d covariance matrix of a feature set of size d
be λj, j = 1...d. Let

λ̃j =
λj∑d
j=1 λj

λ̃ has similar properties like probability namely, 0 ≤ λ̃j ≤ 1 and
∑d

j=1 λ̃j. The
entropy function is defined

HR =
d∑

j=1

λ̃jlogλ̃j

The above measure is known as Representation Entropy. The function HR attains a
minimum value when all the information is present along a single coordinate direction.
The value of the function is maximum when the information is equally distributed
among the features, and so is the uncertainty involved in feature selection. The
Representation Entropy is the property of the dataset as represented by the particular
set of features and is a measure of the amount of information compression possible by
dimensionality reduction. This is equivalent to the amount of redundancy present in
the reduced feature set. It is expected that the entropy of individual clusters should
be low, whereas the final reduced feature set should have low redundancy, i.e., a high
value of Representation Entropy.

12https://www.medcalc.org/manual/roc-curves.php

https://www.medcalc.org/manual/roc-curves.php

5.4 Evaluation Metrics 75

• Friedman Test - It is a non-parametric statistical test used to detect differences
in treatments across multiple test attempts 13. We have used an ensemble learning
method based on Voting Classifier to carry out the Friedman Test. The reduced
feature sets obtained from the different approaches are scored using the Voting Clas-
sifier. The Friedman test ranks the scores, checks for the statistical difference, and
determines which results are better based on the scores. The results of the Friedman
test is discussed in Section 5.6.3.

For describing the results of the quantitative evaluation, we have used a couple of
datasets from the table of selected datasets (Table 5.1). The evaluation metrics are ex-
plained with respect to the results and is given in Section 5.6.1 and 5.6.2.

The proposed approach doesn’t require any parameter tuning like estimating the num-
ber of clusters or classes. The selected features are calculated based on the intrinsic prop-
erties of the data. The existing approaches, however, require some parameter tuning to
yield the results. We have manually set the required parameters for some of the existing
approaches. The Laplacian Feature Selection method and the Spectral Feature Selection
method doesn’t require any parameter tuning; however, they rank all the features sepa-
rately. We have selected the top K features from both the approaches corresponding to the
number of features returned by our proposed approach. The UDFS and NDFS methods
require the number of clusters in advance before feature selection. We have put the number
of classes present in the data as the number of clusters for optimal results. The MCFS
method requires the number of clusters and the number of final features to be selected.
The clusters are given corresponding to the classes in the data, and the number of final
features is set corresponding to the number of features returned by our proposed approach.

5.4.2 Qualitative Evaluation

The qualitative evaluation is more subjective to quantitative evaluation. It is defined in
science as any observation made using the five senses. In research and business, qualitative
evaluations may involve value judgments and emotional responses 14. In our thesis, the
qualitative evaluation is performed by the visualization method. We have used the Parallel
Coordinate plot as the primary method to observe clutter in different cases. Since plotting
a Parallel Coordinate with many dimensions is clumsy, we have used a couple of datasets
with relatively less number of features. The two selected datasets are namely; Heart
dataset having 13 features and Australian Credit Approval dataset having 14 features.
The following steps are used to perform the evaluation :

• The original dataset is plotted using Parallel Coordinate Plot without performing
any dimensionality reduction.

• The unsupervised feature selection is carried out using the Laplacian Feature Selec-
tion method and our proposed approach.

13https://www.statisticshowto.datasciencecentral.com/friedmans-test/
14https://urlzs.com/E2GQH

https://www.statisticshowto.datasciencecentral.com/friedmans-test/
https://urlzs.com/E2GQH

76 5 Evaluation

• The reduced feature sets from both the methods are also plotted using Parallel Coor-
dinate Plot and compared with each other and also with the original plot to observe
the clutter present.

5.5 Computational Complexity
The computational complexity is calculated after the ingestion and the feature correla-
tion phase. We have determined the computational complexity from the Complete feature
graph (Figure 4.6) until we obtain the Representative feature graph (Figure 4.9). Our pro-
posed approach first performs the unsupervised feature clustering on the entire feature set.
The recursive process of determining the feature clusters mainly depends on three steps;
identifying the threshold coefficient using K-NN method, maximal clique determination,
and finding the weight of each maximal clique. In our case, the complexity of identifying
the threshold coefficient depends on the number of nodes in the feature graph and the value
of k. The complexity is given as O(kn). In [82], the authors have determined the com-
plexity of maximal clique determination and is equal to O(2n/3) or O(1.2599n), where n is
the number of nodes. The complexity of finding the weights of each of the maximal clique
depends on the number of edges, O(e), in the maximal clique. After the feature clusters
are determined, the algorithm performs Representative Feature selection from each cluster
based on the Eigenvector Centrality. The complexity of determining Eigenvector Central-
ity is O(qE), where q is the number of iterations needed before convergence, and E is the
number of edges in each cluster 15. The combined computational complexity for feature
clustering and selection can be written as :

[O(kn) +O(1.2599n) + (p×O(e))] +O(qE)

where n is the total number of features in the feature graph, k is the number of nearest
neighbors, p is the number of intermediate maximal cliques obtained, e is the number of
edges in each maximal clique, q is the number of iterations required to determine Eigen-
vector Centrality and E is the number of edges in the cluster.

The computational function is recursively applied the number of times until all the
clusters are formed. The core complexity of the problem or the step taking the maximum
time is the exponential function to determine maximal cliques in the graph. It suggests that
the time complexity to determine maximal cliques increases exponentially with the number
of features. In other words, we can say that as the number of features in the complete
feature graph increases, the time to determine maximal cliques increases exponentially. To
justify this, we have calculated the time taken to process the feature graph and determine
the Representative Features. We have selected 8 unsupervised datasets in different feature
ranges to determine the time complexity. Table 5.2 shows the time required to process
different datasets.

A line chart between the number of features and the time is shown in Figure 5.1. As seen
in the figure, the time taken increases exponentially with respect to the number of features

15https://urlzs.com/NyciK

https://urlzs.com/NyciK

5.5 Computational Complexity 77

Dataset Name Dimensions Time (in
seconds)

Automobile Dataset 25 0.10
QSAR Biodegradation Dataset 41 0.16
Emotions Dataset 78 0.97
Robot Failure Dataset 91 1.08
Yeast Dataset 116 2.42
Musk Dataset 168 11.61
Arrhythmia Dataset 280 22.52
Airline Ticket Price Dataset 417 43.59

Table 5.2: Time Measured on Different Datasets

Figure 5.1: Time Complexity Analysis

in the dataset. It shows that the computational complexity of the proposed algorithm is
of the exponential form. On analyzing the time taken for processing the features, the total
computational complexity of the algorithm is found to be O(1.38n).

78 5 Evaluation

5.6 Quantitative Evaluation Results
In this section, the evaluation results with respect to the classification and clustering
accuracy are presented in the form of grouped bar charts. The ROC curves are plotted
side-by-side for each of the feature selection methods. The Representation Entropy is
shown in the tabular format. We have discussed the evaluation results of two datasets;
The Musk Dataset and The Robot-Failures Dataset. The results of the remaining datasets
are given in Appendix A.2.

5.6.1 The Musk Dataset

The Musk dataset has 168 features and 477 instances. The dataset has 2 classes that are
evenly distributed. Our proposed approach has selected 32 features from the Musk dataset.
The quantitative evaluation results are shown below.

Figure 5.2: Classification Accuracy (Musk Dataset)

Figure 5.2 shows the comparison of classification accuracy of different feature selection
methods. The data points corresponding to the reduced feature space obtained from each of
the feature selection methods are divided into the train, and test sets, and the classification
accuracy is determined using the 4 mentioned classifiers. The accuracy of the reduced
feature space from our proposed approach has shown relatively better results in all the
classifiers. The accuracy using the Random Forest classifier is the highest, whereas the
accuracy using the SVM classifier is the lowest. The reason for showing the good result
is that the dataset has a balanced proportion of categorical and numerical features. Since
our approach segregates the features and applies feature clustering and selection to the

5.6 Quantitative Evaluation Results 79

respective feature groups, the results obtained are relatively better. The figure also shows
the accuracy when the classification is performed on the full feature set. As seen, the
classification accuracy is more on the full feature set, but the relative accuracy difference
is low when compared with our approach.

Figure 5.3: Clustering Accuracy (Musk Dataset)

Figure 5.3 shows the comparison of the clustering accuracy of different feature selection
methods. Similar to determining the classification accuracy, the dataset is divided in the
train, and test sets and the clustering accuracy are measured using 2 clustering algorithms;
Expectation Maximization and K-means Clustering. Although the overall clustering ac-
curacy is low as compared to the classification accuracy, the relative performance of our
approach is good. Since we don’t know the number of clusters in advance, we have assigned
the number of classes as the number of clusters. The low accuracy could be because the
number of clusters in the data are different from what we have assigned. The relatively
good performance of our proposed approach is due to the balanced nature of the dataset,
as described above. As seen, the accuracy using the full feature set is more compared to
the reduced feature sets.

Figures 5.4 and 5.5 show the ROC curves of the reduced feature sets measured using
different classifiers. The ROC curve is used to measure class separability. The higher Area
Under The Curve (AUC), the better the performance of the model. In other words, higher
the AUC, better the model is at predicting 0s as 0s and 1s as 1s. The maximum value of
AUC is 1, and the dotted orange diagonal line denotes the 0.5, i.e., half of the AUC. As
seen, the ROC curve plotted using the mentioned classifiers on all the reduced feature sets
are beyond the orange line, thereby showing good performance. The ROC curve plotted
using the SVM classifier has shown relatively average performance on all the approaches.

80 5 Evaluation

The ROC curve plotted using our proposed approach is significantly better compared to
other approaches. The ROC curve for Logistic Regression, Naive Bayes, and Random
Forest are far beyond the orange line and towards the left-top corner denoting larger AUC.

Figure 5.4: ROC Curve (Musk Dataset)(1)

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.91315 0.90626 0.84794 0.7526 0.94620 1.0111

Table 5.3: Representation Entropy (Musk Dataset)

5.6 Quantitative Evaluation Results 81

Table 5.3 shows the Representation Entropy obtained from the different reduced feature
sets. It is a measure of the redundancy rate. The Representation Entropy HR is calculated
using the formula given in section 5.4.1 (Point 4). The Representation Entropy of the
features belonging to the same cluster is low because they share the same information.
In our proposed approach, we have first performed feature clustering and then selected
the Representative feature from each cluster, ensuring that the selected features don’t
have the same information or possess low redundancy. In other words, the higher the
Representation Entropy of the selected features, the lower is the redundancy rate. The
Representation Entropy of our proposed approach is higher, meaning the selected features
have a relatively low redundancy rate.

Figure 5.5: ROC Curve (Musk Dataset)(2)

82 5 Evaluation

5.6.2 The Robot-Fail Dataset

The dataset has 91 features and 268 instances. It contains force and torque measurements
on a robot after failure detection. Each failure is characterized by 15 force/torque samples
collected at regular time intervals. It is a multi-class dataset having 5 classes. Our proposed
approach has selected 19 features from the Robot-Fail dataset.

Figure 5.6: Classification Accuracy (Robot-Fail Dataset)

Figure 5.6 shows the comparison of classification accuracy of different feature selection
methods using the Robot-Fail dataset. The steps involved in calculating the classification
accuracy is the same as mentioned in the Musk dataset. As seen in the figure, the overall
accuracy is low on all the reduced sets. The reason being it is a multi-class dataset and
the classifier has to classify among 5 classes. As the number of classes increases, the
chances of misclassification (error rate) also increases as a result of which the accuracy
decreases. The accuracy our proposed approach corresponding to Random Forest has
shown relatively good performance, whereas using other classifiers the approach has shown
average performance. The feature selection methods that ranks the feature set have the
advantage of selecting more features to improve the accuracy. For example, instead of
selecting top 19 features using Laplacian method, if we select top 30 features, the accuracy
might increase. We cannot set the number of selected features in our proposed approach,
so we cannot increase the accuracy in such cases.

Figure 5.7 shows the clustering accuracy of different feature selection methods. The
steps to determine accuracy is the same as mentioned in the Musk dataset. As seen,
the clustering accuracy is very low on all the reduced feature sets obtained from different
approaches. The reason is that it is a multi-class dataset, and we don’t know the number

5.6 Quantitative Evaluation Results 83

Figure 5.7: Clustering Accuracy (Robot-Fail Dataset)

of actual clusters in advance. We have set the number of clusters as the number of classes
present in the data. Since the accuracy is low, we can expect the actual number of clusters
to be different from what we have specified. As discussed in the classification accuracy, the
ranking feature selection methods may have the advantage of selecting more top-ranked
features to increase accuracy. Our proposed approach has a disadvantage since we cannot
set the number of final selected features. The algorithm itself determines the number of
clusters and so the number of Representative Features.

Figures 5.8 and 5.9 show the ROC curves plotted on the reduced feature sets obtained
from different approaches. ROC curves are typically used in binary classification to study
the output of a classifier. In order to extend the ROC curve and ROC area to multi-class
or multi-label classification, it is necessary to binarize the output and use one verses rest
classifiers. For example, the ROC curve is plotted between Class 0 and the rest Classes
(Class 1,2,3 and 4). Similarly, the curves are plotted for all the classes. We have used
the SVM classifier to generate different multi-class ROC curves. Similar to the way as
mentioned in the Musk dataset, the black dotted diagonal line represents 50 percent of
the Area Under the Curve (AUC). Although the ROC curves for all the classes on our
proposed approach are beyond the black dotted line, the curves are not near the top-left
corner, thereby making the AUC around 0.75. The reason for having less AUC is because
it is a multi-class dataset, and the chances of predicting 0s with 0s decreases as the number
of classes increases.

84 5 Evaluation

Figure 5.8: ROC Curve using SVM (Robot-Fail Dataset)(1)

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.38221 0.87985 0.54304 0.92084 0.29013 0.44478

Table 5.4: Representation Entropy (Robot-Fail Dataset)

5.6 Quantitative Evaluation Results 85

Table 5.4 shows the Representation Entropy obtained from the reduced feature sets of
different approaches. The function to determine the Representation Entropy is the same
as discussed in the Musk dataset. The entropy obtained from our approach is average.
It means that the Representative Feature selected from each cluster in our approach may
have a strong correlation with each other. Due to the presence of correlation, the selected
features may share the same information as a result of which the entropy is low, and the
redundancy is high. In other words, we can say that the redundancy rate of the selected
features is average using our approach.

Figure 5.9: ROC Curve using SVM (Robot-Fail Dataset)(2)

86 5 Evaluation

5.6.3 Friedman Test

The Friedman test is the non-parametric alternative to the one-way ANOVA with repeated
measures. It is used to test for differences between groups across multiple test attempts 16.
The idea is to verify if there is a significant difference between blocks with a fast multiple
comparison method. Non-parametric means the test doesn’t assume the data comes from
the normal distribution.

Dataset Laplacian Spectral UDFS NDFS MCFS Our Approach

Autos 0.8064 0.6935 0.7258 0.8225 0.7419 0.7903

Brst_Cncr 0.9649 0.9005 0.8421 0.9415 0.8362 0.9532

QSAR_bio 0.8138 0.7791 0.8296 0.8454 0.8264 0.8801

Sonar 0.4603 0.5079 0.5873 0.6507 0.4761 0.7619

Emotions 0.8314 0.8314 0.8595 0.7977 0.6853 0.8314

Robot_Fl 0.68 0.54 0.5 0.48 0.64 0.66

Specmtr 0.925 0.93125 0.95 0.9125 0.975 0.95625

Musk 0.8601 0.8531 0.8391 0.8881 0.9930 0.9998

Table 5.5: Voting Classifier Scores

To perform the Friedman Test, we have created a score table (Table 5.5) for each of the
feature selection methods corresponding to the selected datasets. The score is obtained
by using the ensemble learning method on the reduced feature sets. Ensemble learning
uses multiple machine learning models to try to make better predictions on a dataset. An
ensemble model works by training different models on a dataset and having each model
make predictions individually. The predictions of these models are then combined in the
ensemble model to make a final prediction 17. Since every model has its strengths and
weaknesses, therefore, ensemble methods can be beneficial by combining individual models.
We have used Voting Classifier in which the ensemble model makes the prediction by
majority vote. We have used three different estimators to put into our Voting Classifier:
K-Nearest Neighbors, Random Forest, and Logistic Regression. The reduced feature sets
are divided into train and test data with stratification so that the proportion of the classes
is maintained in the sample. Grid search 18 is used to find the optimal hyperparameters for
each estimator. It works by training the estimator multiple times on a range of parameters.

16https://www.statisticshowto.datasciencecentral.com/friedmans-test/
17https://towardsdatascience.com/ensemble-learning-using-scikit-learn-85c4531ff86a
18https://scikit-learn.org/stable/modules/grid_search.html

https://www.statisticshowto.datasciencecentral.com/friedmans-test/
https://towardsdatascience.com/ensemble-learning-using-scikit-learn-85c4531ff86a
https://scikit-learn.org/stable/modules/grid_search.html

5.6 Quantitative Evaluation Results 87

Dataset Laplacian Spectral UDFS NDFS MCFS Our Approach

Autos 5 1 2 6 3 4

Brst_Cncr 6 3 2 4 1 5

QSAR_bio 2 1 4 5 3 6

Sonar 1 3 4 5 2 6

Emotions 5 5 6 4 3 5

Robot_Fl 6 3 2 1 4 5

Specmtr 2 3 4 1 6 5

Musk 3 2 1 4 5 6

Total 30 21 25 30 27 42

Table 5.6: Friedman Ranks

We have used 5-fold cross-validation to determine the accuracy. The best values of each
estimator are ensembled to the Voting Classifier, and the combined score is obtained.

The Friedman test is applied to the score obtained from the Voting Classifier. It is
based on the null hypothesis that there is no difference among the results. If the calculated
score is greater than the critical value, we can reject the null hypothesis. It starts by
ranking each column separately. The smallest score should get a rank of 1, and the largest
score should get a rank of 6 (since we have 6 types of feature selection methods). The
total of each column is then determined. The Friedman score is calculated using the below
formula.

FriedmanScore =
12

N × k × (k + 1)

∑
R2 − 3×N × (k + 1)

where N : the number of datasets, k: the number of feature selection methods, R: The
total ranks for each of the six columns.

88 5 Evaluation

Figure 5.10: Friedman Ranks

Using the scmamp package 19 in R, the Friedman score is computed to 10.851. It has 5
degrees of freedom and a p-value of 0.054. The score is compared from the table of critical
values 20. Using the degree of freedom as 5 an alpha level of 10%, we found that the
critical value is 9.236. Since our score is greater than the critical value, we can reject the
null hypothesis and conclude that there are statistical differences between the results. To
visualize the differences, the average ranks are plotted in the form of multiple line chart,
as shown in Figure 5.10.

19https://www.rdocumentation.org/packages/scmamp/versions/0.2.55
20https://www.statisticshowto.datasciencecentral.com/tables/

chi-squared-table-right-tail/

https://www.rdocumentation.org/packages/scmamp/versions/0.2.55
https://www.statisticshowto.datasciencecentral.com/tables/chi-squared-table-right-tail/
https://www.statisticshowto.datasciencecentral.com/tables/chi-squared-table-right-tail/

5.6 Quantitative Evaluation Results 89

5.6.4 Summary of the Quantitative Evaluation Results

In this section, the quantitative evaluation results on the selected datasets are summarized.
The results of 2 datasets; Musk and Robot-fail are discussed in the Section 5.6.1 and 5.6.2.
The remaining results are given in Appendix A.2.

• Datasets having binary class - The classification and clustering accuracy of the
datasets having binary class is relatively good. The ROC curve also has shown good
coverage. The redundancy rate is calculated to be below average. The Sonar and the
Emotions dataset show these results. The datasets having binary class and a balanced
proportion of categorical and numerical feature groups (Musk dataset) have shown
even better results.

• Datasets having multiple classes - The overall quantitative results are low when
dealing with multi-class datasets. The ROC coverage area is also average, and the
redundancy rate is high. As the number of classes increases, the overall accuracy
decreases. The Auto Univ dataset has 8 classes, and the accuracy percent is low.

• Datasets having missing values - The accuracy decreases as the number of missing
values in the dataset increases. The Auto dataset has missing values in a couple of
features. Although it has a balanced proportion of feature groups, the accuracy is
low. We have manually created missing values in the QSAR Biodegradation dataset
to compare the effect of missing values with the original dataset. The classification
accuracy has dropped with the increase in missing values. The ROC curves have also
shown below-average coverage.

• Datasets with skewed Classes - The relative accuracy and the ROC coverage is
found to be good on the datasets having skewed classes. The Representation Entropy
is also average in these cases. The Breast Cancer and the Spectrometer are the two
datasets having skewed classes. The Spectrometer datasets have redundant features,
as a result of which the classification with full feature set leads to overfitting and
show a relative decrease in performance.

90 5 Evaluation

5.7 Qualitative Evaluation
In this section, the two selected datasets; Heart and Australian Credit Approval are plotted
using Parallel Coordinate Plot. The reduced feature sets from Laplacian method and our
approach are also plotted and the observations are described.

5.7.1 Heart Dataset

Figure 5.11: Parallel Coordinate Plot with all Features in the Heart Dataset

5.7 Qualitative Evaluation 91

Figure 5.12: Parallel Coordinate Plot with Reduced Feature Set from the Laplacian Method
in Heart dataset

Figure 5.13: Parallel Coordinate Plot with Reduced Feature Set from the Proposed Ap-
proach in Heart dataset

92 5 Evaluation

5.7.2 Australian Credit Approval Dataset

Figure 5.14: Parallel Coordinate Plot with all Features in the Aus. Credit Dataset

5.7 Qualitative Evaluation 93

Figure 5.15: Parallel Coordinate Plot with Reduced Feature Set from the Laplacian Method
in Aus. Credit dataset

Figure 5.16: Parallel Coordinate Plot with Reduced Feature Set from the Proposed Ap-
proach in Aus. Credit dataset

94 5 Evaluation

5.7.3 Observations

• The Parallel Coordinate Plot with all the features from the Heart dataset is difficult
to interpret because it has a lot of dimensions or axes. The clutter is mainly observed
more when the feature has several factors. For example, chol, trestbps, thalach has
a lot of clutter because all of them have more than 10 factors. The reduced feature
set obtained from the Laplacian method is more clear compared to the full feature
set because it has 5 axes. The Parallel Coordinate Plot obtained from our proposed
approach also has 5 axes, but it is much clear compared to the previous plots. The
reason is that 4 out of the 5 selected features have less number of factors. The
proposed approach works by segregating the dataset into categorical and numerical
parts based on the factors. Since 9 out of 13 features in the original dataset have a
limited number of factors, they are considered as categorical in our approach. The
algorithm proceeds by determining the clusters and the Representative Features from
each of the categorical and numerical feature groups. As the majority of the features
are treated as categorical, the reduced feature set also has more categorical features
making the Parallel Coordinate far less cluttered.

• The Parallel Coordinate Plot from all the features in the Australian Credit Approval
dataset has a lot of clutter because of many axes and numerical features. The Lapla-
cian method encodes the categorical features to numerical, and the Parallel Coordi-
nate Plot has 6 features. Our proposed approach starts by segregating the dataset.
Since the categorical features constitute almost half of the total features, there are 3
categorical and 3 numerical features in the reduced feature set. The clutter observed
is a lot less than the previous plots.

Chapter 6

Conclusion

6.1 Summary

In this thesis, an approach to perform unsupervised feature clustering and selection is
presented. A novel graph-based clustering algorithm based on Clique Cover Theory is
used to perform feature clustering. The number of clusters and the size of each cluster
is determined dynamically using the intrinsic properties of the data without any prior
estimation from the user. The Representative Features are selected using a graph centrality
measure known as Eigenvector Centrality. A User Interface is also designed to explore the
feature graphs and to visualize the datapoints of the reduced feature space using standard
visualization methods like Parallel Coordinate Plot, Scatterplot Matrix, Group, and Bar
charts. The approach is also evaluated on several datasets having a varying number of
features and properties. It enables to perform the stress test of the approach at different
circumstances. The evaluation is performed using various quantitative and qualitative
measures with respect to 5 existing unsupervised methods. The selected features have
shown good classification and clustering accuracy in the case of datasets having binary
class. The ROC curve has shown good coverage compared to other methods in most of the
datasets. The redundancy rate is also observed to be average in most of the datasets. In
the qualitative evaluation, the clutter observed is relatively less in Parallel Coordinate Plot
using the selected features from our proposed approach. Since the approach segregates the
features based on factors, it ensures that there are some categorical features in the reduced
feature set. This way, our proposed approach selects features that have good accuracy
and also attempts to minimize the clutter. The computational complexity of our proposed
algorithm for feature clustering and selection is found to be exponential with respect to
the number of features. The overall complexity is measured as O(1.38n).

6.2 Future Work

Our proposed approach of unsupervised feature clustering is based on the feature graph.
The construction of the feature graph depends on the correlations between the features. In

95

96 6 Conclusion

our approach, we have used the correlation measures (MIC and Cramers’V) between every
pair of features. An important extension of the correlation is by determining the multiple
correlations. It can optimize the process of constructing the feature graph by generating
multiple edges simultaneously.

Another aspect where future work can be done is by determining the clusters having
a mix of categorical and numerical features. In our approach, we have segregated the
datasets, and the clusters are determined in the respective feature groups. We can ex-
tend the cluster determination by incorporating a correlation measure to determine the
relationship between numerical and categorical features. The feature graph generated this
way will have a combination of features, and the resulting cluster can have a blend of both
the feature groups.

There is also a possibility to extend the feature selection to deal with the skewed
clusters. The reduced feature set can be inadequate and can led to very low accuracy if
the clusters are highly skewed. For example, suppose a dataset has 24 features, and in the
clustering phase, 20 features become a part of the first cluster, and the remaining 4 features
are part of the second cluster. Since there are only 2 clusters, there will be 2 Representative
Features from each cluster. The resultant feature set is very small compared to the original
dataset, and we can expect it to have low accuracy. It can be mitigated by considering
more than one Representative Feature in the case of such skewed clusters. The algorithm
should decide itself and select more features from each cluster to increase the accuracy.

Bibliography

[1] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data: a
review,” Acm Sigkdd Explorations Newsletter, vol. 6, no. 1, pp. 90–105, 2004.

[2] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci, “Visualizing high-
dimensional data: Advances in the past decade,” IEEE transactions on visualization
and computer graphics, vol. 23, no. 3, pp. 1249–1268, 2016.

[3] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turn-
baugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel associations
in large data sets,” science, vol. 334, no. 6062, pp. 1518–1524, 2011.

[4] P. Mitra, C. Murthy, and S. K. Pal, “Unsupervised feature selection using feature
similarity,” IEEE transactions on pattern analysis and machine intelligence, vol. 24,
no. 3, pp. 301–312, 2002.

[5] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in Advances in
neural information processing systems, 2006, pp. 507–514.

[6] Z. Zhao and H. Liu, “Spectral feature selection for supervised and unsupervised learn-
ing,” in Proceedings of the 24th international conference on Machine learning. ACM,
2007, pp. 1151–1157.

[7] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-cluster data,”
in Proceedings of the 16th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2010, pp. 333–342.

[8] M. Dash and H. Liu, “Feature selection for clustering,” in Pacific-Asia Conference on
knowledge discovery and data mining. Springer, 2000, pp. 110–121.

[9] M. Ester, H.-P. Kriegel, and X. Xu, A database interface for clustering in large spatial
databases. Inst. für Informatik, 1995.

[10] M.-S. Chen, J. Han, and P. S. Yu, “Data mining: an overview from a database per-
spective,” IEEE Transactions on Knowledge and data Engineering, vol. 8, no. 6, pp.
866–883, 1996.

97

98 BIBLIOGRAPHY

[11] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science & Business Media,
2012.

[12] S. Alelyani, J. Tang, and H. Liu, “Feature selection for clustering: A review.” Data
Clustering: Algorithms and Applications, vol. 29, pp. 110–121, 2013.

[13] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local
and global consistency,” in Advances in neural information processing systems, 2004,
pp. 321–328.

[14] W. Du, K. Inoue, and K. Urahama, “Dimensionality reduction for semi-supervised face
recognition,” in International Conference on Fuzzy Systems and Knowledge Discovery.
Springer, 2005, pp. 1–10.

[15] S. R. Bulò and M. Pelillo, “Dominant-set clustering: A review,” European Journal of
Operational Research, vol. 262, no. 1, pp. 1–13, 2017.

[16] B. H. Margolin and R. J. Light, “An analysis of variance for categorical data, ii: small
sample comparisons with chi square and other competitors,” Journal of the American
Statistical Association, vol. 69, no. 347, pp. 755–764, 1974.

[17] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal
of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[18] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad, “A review
of unsupervised feature selection methods,” Artificial Intelligence Review, pp. 1–42,
2019.

[19] N. Meghanathan, “A comprehensive analysis of the correlation between maximal clique
size and centrality metrics for complex network graphs,” Egyptian Informatics Journal,
2016.

[20] R. E. Bellman, Adaptive control processes: a guided tour. Princeton university press,
2015, vol. 2045.

[21] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A survey of dimensionality reduction
techniques,” arXiv preprint arXiv:1403.2877, 2014.

[22] I. Jolliffe, “Principal component analysis,” in International encyclopedia of statistical
science. Springer, 2011, pp. 1094–1096.

[23] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics New York, NY, USA:, 2001, vol. 1, no. 10.

[24] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

BIBLIOGRAPHY 99

[25] S. Lee, “Drawbacks of principal component analysis,” arXiv preprint arXiv:1005.1770,
2010.

[26] H. Yan and Y. Dai, “The comparison of five discriminant methods,” in 2011 Interna-
tional Conference on Management and Service Science. IEEE, 2011, pp. 1–4.

[27] J. A. Lee and M. Verleysen, Nonlinear dimensionality reduction. Springer Science &
Business Media, 2007.

[28] H. Liu and H. Motoda, Feature selection for knowledge discovery and data mining.
Springer Science & Business Media, 2012, vol. 454.

[29] A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning,” Artificial intelligence, vol. 97, no. 1-2, pp. 245–271, 1997.

[30] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised learning,” Journal of
machine learning research, vol. 5, no. Aug, pp. 845–889, 2004.

[31] A. Noruzi and H. Sahebi, “A graph-based feature selection method for improving
medical diagnosis,” Advances in Computer Science: an International Journal, vol. 4,
no. 5, pp. 36–40, 2015.

[32] Z. Zhang and E. R. Hancock, “A graph-based approach to feature selection,” in Inter-
national Workshop on Graph-Based Representations in Pattern Recognition. Springer,
2011, pp. 205–214.

[33] A. M. Elgammal and M. A. Ismail, “A graph-based segmentation and feature extrac-
tion framework for arabic text recognition,” in Document Analysis and Recognition,
2001. Proceedings. Sixth International Conference on. IEEE, 2001, pp. 622–626.

[34] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering high dimensional
data,” in New directions in statistical physics. Springer, 2004, pp. 273–309.

[35] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering
of high dimensional data for data mining applications. ACM, 1998, vol. 27, no. 2.

[36] S. Goil, H. Nagesh, and A. Choudhary, “Mafia: Efficient and scalable subspace clus-
tering for very large data sets,” in Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1999, pp. 443–452.

[37] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast algorithms
for projected clustering,” in ACM SIGMoD Record, vol. 28, no. 2. ACM, 1999, pp.
61–72.

[38] J. H. Friedman and J. J. Meulman, “Clustering objects on subsets of attributes (with
discussion),” Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), vol. 66, no. 4, pp. 815–849, 2004.

100 BIBLIOGRAPHY

[39] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A review,” Data
classification: Algorithms and applications, p. 37, 2014.

[40] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analysis of relieff
and rrelieff,” Machine learning, vol. 53, no. 1-2, pp. 23–69, 2003.

[41] S. Das, “Filters, wrappers and a boosting-based hybrid for feature selection,” in Icml,
vol. 1, 2001, pp. 74–81.

[42] H.-H. Hsu, C.-W. Hsieh et al., “Feature selection via correlation coefficient clustering.”
JSW, vol. 5, no. 12, pp. 1371–1377, 2010.

[43] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in
Noise reduction in speech processing. Springer, 2009, pp. 1–4.

[44] A. Tsanas, M. A. Little, and P. E. McSharry, “A simple filter benchmark for feature
selection,” Journal of Machine Learning Research, no. 1-24, 2010.

[45] L. Myers and M. J. Sirois, “Spearman correlation coefficients, differences between,”
Encyclopedia of statistical sciences, vol. 12, 2004.

[46] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information crite-
ria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[47] R. M. Gray, Entropy and information theory. Springer Science & Business Media,
2011.

[48] C. Yin, L. Feng, L. Ma, Z. Yin, and J. Wang, “A feature selection algorithm based
on hoeffding inequality and mutual information,” Int J Signal Process Image Process
Pattern Recognit, vol. 8, no. 11, pp. 433–444, 2015.

[49] J. Duchi, “Cs229 supplemental lecture notes hoeffdingâs inequality.”

[50] D. J. Sheskin, “Parametric and nonparametric statistical procedures,” Chapman &
Hall/CRC: Boca Raton, FL, 2000.

[51] D. L. Clason and T. J. Dormody, “Analyzing data measured by individual likert-type
items,” Journal of agricultural education, vol. 35, p. 4, 1994.

[52] S. Yu and H. Zhao, “Rough sets and laplacian score based cost-sensitive feature selec-
tion,” PloS one, vol. 13, no. 6, p. e0197564, 2018.

[53] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” in Advances in neural information processing systems, 2002, pp. 585–
591.

BIBLIOGRAPHY 101

[54] X. He and P. Niyogi, “Locality preserving projections,” in Advances in neural infor-
mation processing systems, 2004, pp. 153–160.

[55] T. Hesterberg, N. H. Choi, L. Meier, C. Fraley et al., “Least angle and â1 penalized
regression: A review,” Statistics Surveys, vol. 2, pp. 61–93, 2008.

[56] A. Inselberg and B. Dimsdale, “Parallel coordinates for visualizing multi-dimensional
geometry,” in Computer Graphics 1987. Springer, 1987, pp. 25–44.

[57] E. Bertini, A. Tatu, and D. Keim, “Quality metrics in high-dimensional data visual-
ization: An overview and systematization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 12, pp. 2203–2212, 2011.

[58] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang, “ipca: An inter-
active system for pca-based visual analytics,” in Computer Graphics Forum, vol. 28,
no. 3. Wiley Online Library, 2009, pp. 767–774.

[59] C. Turkay, P. Filzmoser, and H. Hauser, “Brushing dimensions-a dual visual analysis
model for high-dimensional data,” IEEE transactions on visualization and computer
graphics, vol. 17, no. 12, pp. 2591–2599, 2011.

[60] J. H. Friedman and J. W. Tukey, “A projection pursuit algorithm for exploratory data
analysis,” IEEE Transactions on computers, vol. 100, no. 9, pp. 881–890, 1974.

[61] T. N. Dang, A. Anand, and L. Wilkinson, “Timeseer: Scagnostics for high-dimensional
time series,” IEEE Transactions on Visualization and Computer Graphics, vol. 19,
no. 3, pp. 470–483, 2012.

[62] D. Guo, “Coordinating computational and visual approaches for interactive feature
selection and multivariate clustering,” Information Visualization, vol. 2, no. 4, pp.
232–246, 2003.

[63] A. Inselberg and B. Dimsdale, “Parallel coordinates: a tool for visualizing multi-
dimensional geometry,” in Proceedings of the 1st conference on Visualization’90. IEEE
Computer Society Press, 1990, pp. 361–378.

[64] W. Peng, M. O. Ward, and E. A. Rundensteiner, “Clutter reduction in multi-
dimensional data visualization using dimension reordering,” in IEEE Symposium on
Information Visualization. IEEE, 2004, pp. 89–96.

[65] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley, “Dna visual and analytic
data mining,” in Proceedings. Visualization’97 (Cat. No. 97CB36155). IEEE, 1997,
pp. 437–441.

[66] H. Chernoff, “The use of faces to represent points in k-dimensional space graphically,”
Journal of the American Statistical Association, vol. 68, no. 342, pp. 361–368, 1973.

102 BIBLIOGRAPHY

[67] D. A. Keim, M. C. Hao, J. Ladisch, M. Hsu, and U. Dayal, “Pixel bar charts: A new
technique for visualizing large multi-attribute data sets without aggregation,” in IEEE
Symposium on Information Visualization: INFOVIS 2001, 2001, pp. 113–120.

[68] M. N. Wright and A. Ziegler, “ranger: A fast implementation of random forests for
high dimensional data in c++ and r,” arXiv preprint arXiv:1508.04409, 2015.

[69] D. J. Stekhoven and P. Bühlmann, “Missforestânon-parametric missing value imputa-
tion for mixed-type data,” Bioinformatics, vol. 28, no. 1, pp. 112–118, 2011.

[70] S. v. Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by chained
equations in r,” Journal of statistical software, pp. 1–68, 2010.

[71] T. Clark and L. Foster, “Chi-square: introducing the âgoodness of fitâtest and the
âtest of associationâ,” 2014.

[72] T. Speed, “A correlation for the 21st century,” Science, vol. 334, no. 6062, pp. 1502–
1503, 2011.

[73] R. Paredes and E. Chávez, “Using the k-nearest neighbor graph for proximity searching
in metric spaces,” in International Symposium on String Processing and Information
Retrieval. Springer, 2005, pp. 127–138.

[74] M. Lucińska and S. T. Wierzchoń, “Spectral clustering based on k-nearest neighbor
graph,” in IFIP International Conference on Computer Information Systems and In-
dustrial Management. Springer, 2012, pp. 254–265.

[75] W. Apriani, N. S. Sihombing, Z. Habsyah, and S. Suwilo, “Finding maximal clique in
a graph.”

[76] H. Elgazzar and A. Elmaghraby, “Evolutionary centrality and maximal cliques in
mobile social networks,” International Journal of Computer Science & Information
Technology (IJCSIT) Vol, vol. 10, 2018.

[77] S. Segarra and A. Ribeiro, “Stability and continuity of centrality measures in weighted
graphs,” IEEE Transactions on Signal Processing, vol. 64, no. 3, pp. 543–555, 2015.

[78] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The weka data mining software: an update,” ACM SIGKDD explorations newsletter,
vol. 11, no. 1, pp. 10–18, 2009.

[79] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “L2, 1-norm regularized dis-
criminative feature selection for unsupervised,” in Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[80] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, “Unsupervised feature selection using
nonnegative spectral analysis,” in Twenty-Sixth AAAI Conference on Artificial Intel-
ligence, 2012.

BIBLIOGRAPHY 103

[81] P. R. Kersten, J.-S. Lee, and T. L. Ainsworth, “Unsupervised classification of po-
larimetric synthetic aperture radar images using fuzzy clustering and em clustering,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 519–527,
2005.

[82] R. E. Tarjan and A. E. Trojanowski, “Finding a maximum independent set,” SIAM
Journal on Computing, vol. 6, no. 3, pp. 537–546, 1977.

104 BIBLIOGRAPHY

Appendix A

Appendix

A.1 Existing Feature Selection Methods

Algorithm 6: Unspervised Feature Selection using Feature Similarity [4]
Procedure : featureSelection;
Assumptions : O = Fi, i = 1...D be the original number of features D.
(Fi, Fj) denotes the dissimilarity measure between Fi and Fj computed using λ2.
rki represent the dissimilarity between Fi and k-th nearest neighbor in R.
Step 1: Choose an initial value of k≤ D-1. Initialize reduced feature set to original
feature set,i.e., R ← O.
Step 2: For each feature Fi ∈ R, compute rki .
Step 3: Find feature Fi′ for which rki′ is minimum. Retain this feature in R and
discard k nearest features of Fi′ . Let ε = rki′ .
Step 4: If k > cardinality(R)-1: k = cardinality(R)-1.
Step 5: If k=1, Goto Step 8.
Step 6: while rki′ > ε do

a) k = k− 1.
rki′ = infFi∈Rr

k
i .

/* k is decremented by 1 until the k-th nearest neighbor of atleast one of the
features in R is less than ε- dissimilar features. */

b) If k=1, Goto Step 8.
/* If no feature in R has less than ε- dissimilar nearest neighbor, select all

the features in R */
end
Step 7: Goto Step 2.
Step 8: Return the feature set R as the reduced feature set.

105

106 A Appendix

Algorithm 7: Laplacian Score for Feature Selection [5]
Procedure : featureSelection;
Assumptions : Let Lr denote the he Laplacian Score of the r-th feature.
Let fri denote the i-th sample of the r-th feature, i = 1, ...,m.
Step 1: A nearest neighbor graph G with m nodes is constructed. An edge is put
between nodes i and j if xi and xj are “close”, i.e. xi is among k nearest neighbors
of xj or vice-versa.
Step 2: if nodes i and j are connected then

Sij ← e−
|xi−xj |2

t
,where t is a suitable constant.

end
else

Sij ← 0
end
Step 3: For each r-th feature.
fr = [fr1, fr2, fr3...frm]

T ,
D = diag(S1),
1 = [1...1]T ,
L = D−S

where D is the diagonal matrix, S is the similarity matrix and L is the Laplacian
matrix. Let f̃r be given as
f̃r = fr − fT

r D1
1TD1

1
Step 4: The Laplacian score of the r-th feature.
Lr =

f̃r
T
Lf̃r

f̃r
T
Df̃r

Algorithm 8: Spectral Feature Selection [6]
Procedure : featureSelection;
Input: X, k, ϕ ∈ (ϕ1, ϕ2, ϕ3)
Output: SFSPEC - the ranked feature list.
Step 1: Construct S, the similarity set from X and Y.
Step 2: Construct graph G from S.
Step 3: Build W, D and L from G.
Step 4: For each feature vector fi do
SFSPEC(i)← ϕ(Fi)

Step 5: Ranking SFSPEC in ascending order for ϕ1 and ϕ2 or descending order for
ϕ3.
Step 6: Return SFSPEC .

A.1 Existing Feature Selection Methods 107

Algorithm 9: Unsupervised Feature Selection for Multi-Cluster Data [7]
Procedure : featureSelection;
Input N data points with M features;
The number of clusters K;
The number of selected features d;
The number of nearest neighbors p.

Output d selected features.
Step 1: Construct a p nearest neighbor graph.
Step 2: : Solve the generalized eigen-problem in Let Y = [y1...yK] contain the top
K eigenvectors with respect to the smallest eigenvalues.
Step 3: Solve K L1-regularized regression problem using LARs algorithm with the
cardinality constraint set to d.
Step 4: Compute the MCFS score for each feature
Step 5: Return the top d features according to their MCFS scores.

108 A Appendix

A.2 Quantitative Evaluation Results

A.2.1 Automobile Dataset

Figure A.1: Classification Accuracy (Automobile Dataset)

Figure A.2: Clustering Accuracy (Automobile Dataset)

A.2 Quantitative Evaluation Results 109

Figure A.3: ROC Curves (Automobile Dataset) 1

110 A Appendix

Figure A.4: ROC Curves (Automobile Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.3462 0.00186 0.0150 0.216 0.00181 0.0162

Table A.1: Representation Entropy (Automobile Dataset)

A.2 Quantitative Evaluation Results 111

A.2.2 Breast Cancer Dataset

Figure A.5: Classification Accuracy (Breast Cancer Dataset)

Figure A.6: Clustering Accuracy (Breast Cancer Dataset)

112 A Appendix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Laplacian ROC Curve Analysis

LogisticRegression, AUC=0.979
GaussianNB, AUC=0.976
SVC, AUC=0.895
RandomForestClassifier, AUC=0.977

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Spectral ROC Curve Analysis

LogisticRegression, AUC=0.919
GaussianNB, AUC=0.910
SVC, AUC=0.919
RandomForestClassifier, AUC=0.938

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UDFS ROC Curve Analysis

LogisticRegression, AUC=0.563
GaussianNB, AUC=0.875
SVC, AUC=0.500
RandomForestClassifier, AUC=0.981

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NDFS ROC Curve Analysis

LogisticRegression, AUC=0.978
GaussianNB, AUC=0.971
SVC, AUC=0.123
RandomForestClassifier, AUC=0.972

Figure A.7: ROC Curves (Breast Cancer Dataset) 1

A.2 Quantitative Evaluation Results 113

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MCFS ROC Curve Analysis

LogisticRegression, AUC=0.569
GaussianNB, AUC=0.938
SVC, AUC=0.495
RandomForestClassifier, AUC=0.964

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our Approach ROC Curve Analysis

LogisticRegression, AUC=0.980
GaussianNB, AUC=0.973
SVC, AUC=0.917
RandomForestClassifier, AUC=0.979

Figure A.8: ROC Curves (Breast Cancer Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.0012 0.359 0.00091 0.04194 - 0.00920

Table A.2: Representation Entropy (Breast Cancer Dataset)

114 A Appendix

A.2.3 Auto Univ Dataset

Figure A.9: Classification Accuracy (Auto Univ Dataset)

Figure A.10: Clustering Accuracy (Auto Univ Dataset)

A.2 Quantitative Evaluation Results 115

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Laplacian Multi Class ROC Analysis

micro-average ROC curve (area = 0.57)
macro-average ROC curve (area = 0.52)
ROC curve of class 0 (area = 0.48)
ROC curve of class 1 (area = 0.47)
ROC curve of class 2 (area = 0.51)
ROC curve of class 3 (area = 0.58)
ROC curve of class 4 (area = 0.52)
ROC curve of class 5 (area = 0.49)
ROC curve of class 6 (area = 0.46)
ROC curve of class 7 (area = 0.64)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Spectral Multi Class ROC Analysis

micro-average ROC curve (area = 0.57)
macro-average ROC curve (area = 0.53)
ROC curve of class 0 (area = 0.47)
ROC curve of class 1 (area = 0.57)
ROC curve of class 2 (area = 0.46)
ROC curve of class 3 (area = 0.53)
ROC curve of class 4 (area = 0.59)
ROC curve of class 5 (area = 0.55)
ROC curve of class 6 (area = 0.56)
ROC curve of class 7 (area = 0.51)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UDFS Multi Class ROC Analysis

micro-average ROC curve (area = 0.56)
macro-average ROC curve (area = 0.51)
ROC curve of class 0 (area = 0.47)
ROC curve of class 1 (area = 0.57)
ROC curve of class 2 (area = 0.46)
ROC curve of class 3 (area = 0.53)
ROC curve of class 4 (area = 0.59)
ROC curve of class 5 (area = 0.55)
ROC curve of class 6 (area = 0.56)
ROC curve of class 7 (area = 0.51)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NDFS Multi Class ROC Analysis

micro-average ROC curve (area = 0.57)
macro-average ROC curve (area = 0.54)
ROC curve of class 0 (area = 0.52)
ROC curve of class 1 (area = 0.51)
ROC curve of class 2 (area = 0.59)
ROC curve of class 3 (area = 0.55)
ROC curve of class 4 (area = 0.53)
ROC curve of class 5 (area = 0.55)
ROC curve of class 6 (area = 0.47)
ROC curve of class 7 (area = 0.57)

Figure A.11: ROC Curves (Auto Univ Dataset) 1

116 A Appendix

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MCFS Multi Class ROC Analysis

micro-average ROC curve (area = 0.59)
macro-average ROC curve (area = 0.54)
ROC curve of class 0 (area = 0.57)
ROC curve of class 1 (area = 0.45)
ROC curve of class 2 (area = 0.54)
ROC curve of class 3 (area = 0.64)
ROC curve of class 4 (area = 0.53)
ROC curve of class 5 (area = 0.60)
ROC curve of class 6 (area = 0.42)
ROC curve of class 7 (area = 0.58)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our Approach Multi Class ROC Analysis

micro-average ROC curve (area = 0.58)
macro-average ROC curve (area = 0.55)
ROC curve of class 0 (area = 0.57)
ROC curve of class 1 (area = 0.48)
ROC curve of class 2 (area = 0.48)
ROC curve of class 3 (area = 0.48)
ROC curve of class 4 (area = 0.71)
ROC curve of class 5 (area = 0.65)
ROC curve of class 6 (area = 0.51)
ROC curve of class 7 (area = 0.54)

Figure A.12: ROC Curves (Auto Univ Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.05386 0.003875 0.05718 0.90212 0.77475 0.00391

Table A.3: Representation Entropy (Auto Univ Dataset)

A.2 Quantitative Evaluation Results 117

A.2.4 QSAR Biodegradation Dataset (No Missing Values)

Figure A.13: Classification Accuracy (QSAR Bio Dataset)

Figure A.14: Clustering Accuracy (QSAR Bio Dataset)

118 A Appendix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Laplacian ROC Curve Analysis

LogisticRegression, AUC=0.858
GaussianNB, AUC=0.803
SVC, AUC=0.817
RandomForestClassifier, AUC=0.842

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Spectral ROC Curve Analysis

LogisticRegression, AUC=0.873
GaussianNB, AUC=0.853
SVC, AUC=0.904
RandomForestClassifier, AUC=0.833

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UDFS ROC Curve Analysis

LogisticRegression, AUC=0.874
GaussianNB, AUC=0.843
SVC, AUC=0.852
RandomForestClassifier, AUC=0.883

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NDFS ROC Curve Analysis

LogisticRegression, AUC=0.886
GaussianNB, AUC=0.862
SVC, AUC=0.882
RandomForestClassifier, AUC=0.893

Figure A.15: ROC Curves (QSAR Bio Dataset) 1

A.2 Quantitative Evaluation Results 119

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MCFS ROC Curve Analysis

LogisticRegression, AUC=0.890
GaussianNB, AUC=0.861
SVC, AUC=0.905
RandomForestClassifier, AUC=0.902

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our Approach ROC Curve Analysis

LogisticRegression, AUC=0.877
GaussianNB, AUC=0.843
SVC, AUC=0.866
RandomForestClassifier, AUC=0.885

Figure A.16: ROC Curves (QSAR Bio Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.47426 0.70142 0.5449 0.33878 0.6993 0.65399

Table A.4: Representation Entropy (QSAR Bio Dataset)

120 A Appendix

A.2.5 QSAR Biodegradation Dataset (With Missing Values)

Figure A.17: Classification Accuracy (QSAR Bio Dataset)

Figure A.18: Clustering Accuracy (QSAR Bio Dataset)

A.2 Quantitative Evaluation Results 121

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Laplacian ROC Curve Analysis

LogisticRegression, AUC=0.498
GaussianNB, AUC=0.528
SVC, AUC=0.585
RandomForestClassifier, AUC=0.463

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Spectral ROC Curve Analysis

LogisticRegression, AUC=0.481
GaussianNB, AUC=0.482
SVC, AUC=0.532
RandomForestClassifier, AUC=0.434

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UDFS ROC Curve Analysis

LogisticRegression, AUC=0.491
GaussianNB, AUC=0.452
SVC, AUC=0.566
RandomForestClassifier, AUC=0.377

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NDFS ROC Curve Analysis

LogisticRegression, AUC=0.525
GaussianNB, AUC=0.456
SVC, AUC=0.601
RandomForestClassifier, AUC=0.457

Figure A.19: ROC Curves (QSAR Bio Dataset) 1

122 A Appendix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MCFS ROC Curve Analysis

LogisticRegression, AUC=0.531
GaussianNB, AUC=0.499
SVC, AUC=0.557
RandomForestClassifier, AUC=0.447

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our Approach ROC Curve Analysis

LogisticRegression, AUC=0.424
GaussianNB, AUC=0.477
SVC, AUC=0.533
RandomForestClassifier, AUC=0.495

Figure A.20: ROC Curves (QSAR Bio Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.57004 0.68327 0.54075 0.42013 0.69525 0.62873

Table A.5: Representation Entropy (QSAR Bio Dataset)

A.2 Quantitative Evaluation Results 123

A.2.6 Sonar Dataset

Figure A.21: Classification Accuracy (Sonar Dataset)

Figure A.22: Clustering Accuracy (Sonar Dataset)

124 A Appendix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Laplacian ROC Curve Analysis

LogisticRegression, AUC=0.433
GaussianNB, AUC=0.466
SVC, AUC=0.541
RandomForestClassifier, AUC=0.413

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Spectral ROC Curve Analysis

LogisticRegression, AUC=0.445
GaussianNB, AUC=0.435
SVC, AUC=0.500
RandomForestClassifier, AUC=0.433

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UDFS ROC Curve Analysis

LogisticRegression, AUC=0.484
GaussianNB, AUC=0.463
SVC, AUC=0.531
RandomForestClassifier, AUC=0.470

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NDFS ROC Curve Analysis

LogisticRegression, AUC=0.453
GaussianNB, AUC=0.461
SVC, AUC=0.530
RandomForestClassifier, AUC=0.450

Figure A.23: ROC Curves (Sonar Dataset) 1

A.2 Quantitative Evaluation Results 125

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MCFS ROC Curve Analysis

LogisticRegression, AUC=0.513
GaussianNB, AUC=0.597
SVC, AUC=0.504
RandomForestClassifier, AUC=0.515

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our Approach ROC Curve Analysis

LogisticRegression, AUC=0.642
GaussianNB, AUC=0.845
SVC, AUC=0.573
RandomForestClassifier, AUC=0.864

Figure A.24: ROC Curves (Sonar Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.72008 0.527482 0.796367 0.76677 0.79827 0.76724

Table A.6: Representation Entropy (Sonar Dataset)

126 A Appendix

A.2.7 Emotions Dataset

Figure A.25: Classification Accuracy (Emotions Dataset)

Figure A.26: Clustering Accuracy (Emotions Dataset)

A.2 Quantitative Evaluation Results 127

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Laplacian ROC Curve Analysis

LogisticRegression, AUC=0.788
GaussianNB, AUC=0.776
SVC, AUC=0.774
RandomForestClassifier, AUC=0.882

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Spectral ROC Curve Analysis

LogisticRegression, AUC=0.874
GaussianNB, AUC=0.878
SVC, AUC=0.889
RandomForestClassifier, AUC=0.874

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UDFS ROC Curve Analysis

LogisticRegression, AUC=0.889
GaussianNB, AUC=0.868
SVC, AUC=0.780
RandomForestClassifier, AUC=0.878

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NDFS ROC Curve Analysis

LogisticRegression, AUC=0.772
GaussianNB, AUC=0.795
SVC, AUC=0.777
RandomForestClassifier, AUC=0.811

Figure A.27: ROC Curves (Emotions Dataset) 1

128 A Appendix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MCFS ROC Curve Analysis

LogisticRegression, AUC=0.698
GaussianNB, AUC=0.697
SVC, AUC=0.674
RandomForestClassifier, AUC=0.785

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our Approach ROC Curve Analysis

LogisticRegression, AUC=0.832
GaussianNB, AUC=0.836
SVC, AUC=0.843
RandomForestClassifier, AUC=0.858

Figure A.28: ROC Curves (Emotions Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.20329 0.91409 0.20628 0.20617 0.01400 0.46283

Table A.7: Representation Entropy (Emotions Dataset)

A.2 Quantitative Evaluation Results 129

A.2.8 Spectrometer Dataset

Figure A.29: Classification Accuracy (Spectrometer Dataset)

Figure A.30: Clustering Accuracy (Spectrometer Dataset)

130 A Appendix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Laplacian ROC Curve Analysis

LogisticRegression, AUC=0.876
GaussianNB, AUC=0.902
SVC, AUC=0.500
RandomForestClassifier, AUC=0.874

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Spectral ROC Curve Analysis

LogisticRegression, AUC=0.930
GaussianNB, AUC=0.951
SVC, AUC=0.500
RandomForestClassifier, AUC=0.879

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UDFS ROC Curve Analysis

LogisticRegression, AUC=0.982
GaussianNB, AUC=0.977
SVC, AUC=0.500
RandomForestClassifier, AUC=0.920

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NDFS ROC Curve Analysis

LogisticRegression, AUC=0.939
GaussianNB, AUC=0.901
SVC, AUC=0.500
RandomForestClassifier, AUC=0.868

Figure A.31: ROC Curves (Spectrometer Dataset) 1

A.2 Quantitative Evaluation Results 131

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MCFS ROC Curve Analysis

LogisticRegression, AUC=0.998
GaussianNB, AUC=0.976
SVC, AUC=0.500
RandomForestClassifier, AUC=0.985

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our Approach ROC Curve Analysis

LogisticRegression, AUC=0.988
GaussianNB, AUC=0.954
SVC, AUC=0.500
RandomForestClassifier, AUC=0.974

Figure A.32: ROC Curves (Spectrometer Dataset) 2

Laplacian Spectral UDFS NDFS MCFS Our Approach

Rep Entropy 0.28753 - 0.37981 0.44524 0.43421 0.4492

Table A.8: Representation Entropy (Spectrometer Dataset)

132 A Appendix

Appendix B

Abbreviations

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

LLE Locally Linear Embedding

EM Expectation-Maximization

MLE Maximum Likelihood Estimator

MST Minimum Spanning Tree

KNN K-Nearest Neighbour

MIC Maximal Information Coefficient

CLIQUE Clustering In QUEst

MAFIA Merging Adaptive Finite Intervals Algorithm

PROCLUS PROjected CLUStering

COSA Clustering On Subsets of Attributes

FSSEM Feature Subset Selection using Expectation Maximization

BBHFS Boosting Based Hybrid Feature Selection

MCFS Multi-Cluster Feature Selection

LAR Least Angel Regression

MINE Maximal Information-based Non-parametric Exploration

MICE Multivariate Imputation by Chained Equation

133

134 B Abbreviations

MAS Maximum Asymmetry Score

MEV Maximum Edge Value

IDE Integrated Development Environment

ACC Clustering Accuracy

AUC Area Under The Curve

ROC Receiver Operating Characteristics

	Introduction
	Introduction
	Motivation
	The Curse of Dimensionality
	Challenges of Existing Approaches
	Comparison of Our Approach with the Current State-of-the-Art

	Use Case Scenario
	Goal of the Thesis
	Define Data Model
	Determine Feature Clustering
	Select the Representative Feature
	Visualize the Selected Features
	Evaluate the Proposed Approach

	Related Work
	Related Work on Feature Clustering
	Bottom-up Algorithms
	Top-down Algorithms

	Related Work on Dimensionality Reduction
	Feature Transformation
	Feature Selection

	Related Work on Feature Correlations
	Related Work on Unsupervised Feature Selection Methods
	Unsupervised Feature Selection using Feature Similarity
	Laplacian Score for Feature Selection
	Spectral Feature Selection for Supervised and Unsupervised Learning
	Unsupervised Feature Selection for Multi-Cluster Data

	Related Work on High-dimensional Data Visualization

	Solution
	Selection of Dataset
	Define Data Model
	The System Architecture
	Ingestion Phase
	Data Cleaning
	Data Pre-processing
	Data Imputation
	Data Segregation

	Processing Phase
	Feature Correlation
	Identifying Threshold Coefficient
	Clique Cover Algorithm
	Representative Feature Selection

	Visualization Phase
	Parallel Coordinate Plot
	Scatterplot Matrix
	Grouped and Stacked Bar Charts
	3D Scatterplot

	Implementation
	Ingestion Phase
	Data Cleaning
	Data Pre-processing
	Data Imputation
	Data Segregation

	Processing Phase
	Feature Correlations
	Identifying Threshold Coefficient
	Applying Clique Cover Algorithm
	Representative Feature Selection

	Visualization Phase
	Parallel Coordinate Plot
	Scatterplot Matrix
	Grouped and Stacked Bar Charts
	3D Scatterplot

	User Interface

	Evaluation
	Experimental Setup
	Selection of Datasets
	Existing Approaches
	Evaluation Metrics
	Quantitative Evaluation
	Qualitative Evaluation

	Computational Complexity
	Quantitative Evaluation Results
	The Musk Dataset
	The Robot-Fail Dataset
	Friedman Test
	Summary of the Quantitative Evaluation Results

	Qualitative Evaluation
	Heart Dataset
	Australian Credit Approval Dataset
	Observations

	Conclusion
	Summary
	Future Work

	Appendix
	Existing Feature Selection Methods
	Quantitative Evaluation Results
	Automobile Dataset
	Breast Cancer Dataset
	Auto Univ Dataset
	QSAR Biodegradation Dataset (No Missing Values)
	QSAR Biodegradation Dataset (With Missing Values)
	Sonar Dataset
	Emotions Dataset
	Spectrometer Dataset

	Abbreviations

